In this manuscript, a method to prepare recombinant adeno-associated virus 9 (rAAV9) vectors to manipulate gene expression in the mouse heart is described.
マウスモデルにおける遺伝物質の心筋送達を通して、特定の遺伝子の発現または活性を制御する遺伝子機能の調査を可能にします。心臓におけるそれらの治療可能性を決定することもできます。マウス心臓におけるin vivo分子介入のための限られたアプローチがあります。組換えアデノ随伴ウイルス(rAAV)ベースのゲノム工学は、インビボ心臓遺伝子操作のための不可欠なツールとして利用されています。この技術の具体的な利点は、最小の高効率、高特異性、低ゲノム組込み率を含みます 免疫原性、および最小の病原性。ここでは、パッケージを構築し、rAAV9ベクターを精製するための詳細な手順を説明します。新生児の仔へrAAV9の皮下注射は、肝臓や他の組織に強い発現またはマウス心臓における目的の遺伝子(複数可)の効率的なノックダウンになりますが、ありません。心臓仕を使用しましたC TnnT2プロモーター、心臓におけるGFP遺伝子の高発現が得られました。さらに、rAAV9-U6-shRNAをを利用したときにmRNAが中心部に阻害されたターゲット。 rAAV9技術の知識を作業は、心血管の研究に有用であり得ます。
様々な生物学的システムにおける特定の遺伝子の発現または活性を制御する遺伝子機能1の研究に貴重な戦略となっています。この目標を達成する直接的な手段は、ヌクレオチド配列を操作し、突然変異対立遺伝子を生成することです。生きた細胞のゲノムに正確な、ターゲットに変更を加えることはまだですが、 時間がかかり、労働集約的な練習、強力なTALENおよびCRISPR / Cas9ツールの開発は、ゲノム編集2-5の新時代を開きました。遺伝子操作のためのより多くのルーチンの実験室方法は、対象1,6の遺伝子(複数可)を発現またはノックダウンするために細胞に遺伝物質(DNAおよびコード配列またはsiRNAを/ shRNAを含有するRNA)の導入に焦点を当ててきました。
多くの場合、遺伝子操作のための主要なボトルネックは、細胞へのDNA、RNA、またはタンパク質の送達です。 in vitro試験、効率的なtransfectiに関してシステム上の多くの培養細胞株で確立されています。しかし、特に、マウスモデルにおいて、 インビボでの遺伝子送達は、より困難です。外因性の試薬の効率的な細胞取り込みを達成するためにバイパスする必要が細胞外および細胞内の障壁のシリーズがあります。追加の障害物は、急速なクリアランスと納入材料7,8の短い期間が含まれます。これらの問題を回避する1つの戦略は、 インビボ遺伝子送達のための「担体」または「ビヒクル」としてウイルスベクターを使用することです。ウイルスの自然に進化した伝達特性は、細胞7,9,10への目的の遺伝子の効率的な送達を可能にします。ウイルスベクターの多くのタイプが開発されたマウスにおける異なる細胞型および器官におけるインビボ遺伝子操作で柔軟可能にされています。
最も一般的に使用されるウイルス系は、レトロウイルス、レンチウイルス、アデノウイルス、およびアデノ随伴ウイルス(AAV)を含みます<s> 11アップ。レトロウイルスは一本鎖RNAウイルスであり、標的細胞および器官12-14における形質導入遺伝子の生涯の発現の可能性を提供し、有糸分裂中に安定的に宿主細胞ゲノムへの遺伝物質を導入することができます。しかし、レトロウイルスの多くのタイプは、分裂細胞に感染し、非分裂細胞におけるそれらの有効性は、15非常に低いです。これは、遺伝子送達のためのそれらの有用性を制限します。レンチウイルスは、 レトロウイルス科の属です。他のレトロウイルスとは異なり、レンチウイルスは、分裂および非分裂細胞の両方に感染することができ、広く有糸分裂後、高度に分化した細胞16への遺伝子導入に使用されています。レンチウイルスのライフサイクルは、宿主ゲノムへのベクターDNAの統合を含みます。このように、レンチウイルス媒介遺伝子送達は、形質導入された遺伝的要素16-18の安定的かつ長期間の発現を可能に。しかし、この機能は、二重Eを表すことができますベクターDNAの統合は、挿入変異誘発につながる可能性として、遺伝子発現を操作するためのこれらのウイルスの使用でdged剣 そして宿主細胞に人為的な影響を引き起こす可能性があります。アデノウイルスは、他の広く使用されている遺伝子送達系です。レトロウイルスおよびレンチウイルスとは異なり、アデノウイルスは、非統合され、宿主細胞8,10,11,19のゲノムの完全性を妨げることはありません。また、アデノウイルスは、多くの細胞型にDNAをトランスフェクトすることができ、感染が活発な細胞分裂19に依存しません。ウイルスベクターは19,20を複製する能力を有するようにアデノウイルスの別の重要な特徴は、ベクター精製の容易さです。しかし、このシステムの主要な警告は、アデノウイルス感染は、特に遺伝子治療の研究において、多くの研究におけるその使用を制限し、標的細胞と臓器19における強力な免疫応答を誘発することができることです。
これらの異なるタイプと比較してウイルスベクターのSは、組換えアデノ随伴ウイルス(rAAV)は、理想的な遺伝子送達系21,22であるように見えます。それは、最小限の免疫原性および病原性23,24を示します。また、rAAVのは、分割および非分裂細胞の両方を含む広範囲の細胞型に感染します。ほとんどの場合、のrAAVは、宿主ゲノムに組み込まれません。従って、標的細胞における望ましくない遺伝子またはゲノムの変化の危険性が低い22です。
最近では、rAAVのシステムが正常マウス心筋23,25-29にタンパク質をコードするDNA、miRNAは、shRNAは、およびCRISPR-gRNAsのインビボ送達のために使用されています。この方法論は、心血管研究の分野における基本的な調査と遺伝子治療の研究を容易にしました。ここでは、詳細な手順を効率的に記述された過剰発現またはマウス心臓における目的の遺伝子をノックダウンrAAV9ベクトルを生成します。プロトコルは、簡単かつ効果的な方法を提供しますマウス実験モデルにおける心臓遺伝子発現を操作します。
プラスミド構築の際に望ましくないITR再結合を最小限にすることが重要です。ウイルスを生成する前に、人は必ず制限消化及びアガロースゲル電気泳動を使用してAAVプラスミドのITRの完全性を監視しなければなりません。 100%完全なプラスミドを得ることは不可能であるが、再結合率が可能な限り少なくする必要があります。 20%未満が成功rAAV9包装のために許容可能です。注目すべきは、?…
The authors have nothing to disclose.
We thank Dr. Zaffar Haque for careful reading of the manuscript. We thank Drs. Masaharu Kataoka and Gengze Wu for discussions and help. Work in the Wang lab is supported by the American Heart Association, Muscular Dystrophy Association, and NIH (HL085635, HL116919, HL125925).
Polyethylenimine, Linear (MW 25,000) | Polysciences, Inc. | #23966-2 | |
Tube, Polypropylene, 36.2 mL, 25 x 87 mm, (qty. 56) | Beckman Coulter, Inc | # 362183 | |
Nuclease, ultrapure | SIGMA | #E8263-25KU | |
Density Gradient Medium(Iodixanol) | SIGMA | #D1556-250ML | |
Centrifugal Filter Unit with Ultracel-100 membrane | EMD Millipore Corporation | #UFC910008 | |
Laboratory pipetting needle with 90° blunt ends,gauge 14, L 6 in., nickel plated hub | SIGMA | #CAD7942-12EA | |
Poloxamer 188 solution (Pluronic® F-68 solution) | SIGMA | P5556-100ML | |
Proteinase K | SIGMA | 3115828001 | |
DNase I | Roche | 10104159001 | |
Centrifuge machine | Thermo Scientific | 75004260 | |
Centrifuge System | Beckman Coulter | 363118 | |
Ultracentrifuge | Beckman Coulter | ||
DMEM medium | Fisher Scientific | SH30243FS | |
Fetal Bovine Serum | Atlanta Biologicals | S11150 | |
rAAV9 vector | Penn Vector Core | P1967 |