Summary

小胶质细胞作为替代生物传感器确定纳米颗粒神经毒性

Published: October 25, 2016
doi:

Summary

Microglia (immune cells of the brain), are used as a surrogate biosensor to determine how nanoparticles influence neurotoxicity. We describe a series of experiments designed to assay microglial response to nanoparticles and exposure of hypothalamic neurons to supernatant from activated microglia to determine neurotoxicity.

Abstract

Nanoparticles found in air pollutants can alter neurotransmitter profiles, increase neuroinflammation, and alter brain function. Therefore, the assay described here will aid in elucidating the role of microglia in neuroinflammation and neurodegenerative diseases. The use of microglia, resident immune cells of the brain, as a surrogate biosensor provides novel insight into how inflammatory responses mediate neuronal insults. Here, we utilize an immortalized murine microglial cell line, designated BV2, and describe a method for nanoparticle exposure using silver nanoparticles (AgNPs) as a standard. We describe how to expose microglia to nanoparticles, how to remove nanoparticles from supernatant, and how to use supernatant from activated microglia to determine toxicity, using hypothalamic cell survival as a measure. Following AgNP exposure, BV2 microglial activation was validated using a tumor necrosis factor alpha (TNF-α) enzyme linked immunosorbent assay (ELISA). The supernatant was filtered to remove the AgNP and to allow cytokines and other secreted factors to remain in the conditioned media. Hypothalamic cells were then exposed to supernatant from AgNP activated microglia and survival of neurons was determined using a resazurin-based fluorescent assay. This technique is useful for utilizing microglia as a surrogate biomarker of neuroinflammation and determining the effect of neuroinflammation on other cell types.

Introduction

环境污染,特别是那些纳米粒子(NP)范围(1 – 20纳米的直径),已与肥胖症和由于跨越血脑屏障1-3的能力其它神经变性疾病。升高的接触污染可能诱发炎症在中枢神经系统,包括下丘脑1。在发生这种情况可能是通过小胶质细胞的纳米颗粒诱导的激活(脑免疫细胞)4-一个潜在机制。以前的研究已经在体内模型用于研究纳米颗粒对脑健康这是费时的,昂贵的影响,并且不直接回答的纳米颗粒如何影响小胶质细胞的问题。小胶质细胞在中枢神经系统中发挥着多方面的作用,包括维护脑微环境,并通过的分泌因子和细胞因子的释放周围的神经元进行通信。根据不同的刺激,小胶质细胞可激活到M1的公关邻炎症或M2抗炎状态。例如,M1激活的小胶质细胞释放促炎细胞因子如肿瘤坏死因子α(TNF-α),而M 2活化的小胶质细胞释放抗炎细胞因子,包括白细胞介素-4(IL-4)。为了验证我们的体外生物传感器替代确定空气污染物的毒性,我们测量到20纳米的银纳米颗粒(AGNPS)小胶质细胞的反应。本文的目的是描述一种体外小胶质细胞系如何可以用作用于测试小鼠小神经胶质响应于NP和如何小胶质细胞活化的影响下丘脑的细胞的替代生物传感器标记。长期打算在验证模型的应用是在测试大脑健康和神经退行性疾病现实世界的污染物的影响。我们提供一种在体外 96孔格式测定的详细说明,用于测量小胶质细胞活化和下丘脑细胞存活麦克风的曝光以下 roglial条件培养基。

测定小胶质细胞活化使用酶联免疫吸附测定(ELISA)以下的TNF-α的酶下列AgNP曝光。以确定对下丘脑细胞中激活的小胶质细胞的效果,AGNPS被使用的过滤装置的小胶质细胞上清液(条件培养基)中除去。该过滤装置保持细胞因子,同时排除根据大小AGNPS。简要地说,从具有或不AGNPS治疗小神经胶质细胞收集上清液,加至过滤器,并在14000×g离心15分钟。那时我们能够确定对下丘脑细胞活力小胶质细胞分泌的细胞因子的影响。如前所述5,6-暴露于条件培养基(含有细胞因子)的细胞毒性通过基于刃天青的测定法来确定。代谢活性细胞减少刃天青并产生正比于活细胞7的数量的荧光信号。

核苷酸“>有使用这种技术比其他(如共培养,反式好设置,或在体内实验)的多个优点。我们的模型提供了直接激活的小胶质细胞,并确定是否分泌的因子是有毒的神经元8的能力。目前的协议采用永生BV2小胶质细胞刺激与20纳米的直径的纳米颗粒,和永生化的鼠下丘脑细胞(指定mHypo-A1 / 2)9,用于测定随后的反应。虽然该协议已经为这些特定的条件进行了优化,该方法可以是改变,以在小胶质诱导的细胞死亡的其它模型一起使用,或与其它类型的细胞包括原代小神经胶质细胞和神经元。

Protocol

1.小胶质细胞培养维护暖细胞培养基(Dulbecco氏改良的Eagle培养基; DMEM)中补充有10%胎牛血清(FBS)和1%青霉素/链霉素/新霉素(PSN)至37℃。 获取BV2小胶质细胞的冷冻库存的通道18 – 在-80℃,25从存储中。迅速解冻在37℃水浴细胞。 轻轻细胞转移到含有10ml细胞培养基一个75cm 2的排出烧瓶。 在37℃孵育烧瓶在5%CO 2。吸媒体后24小时,并用新鲜的培养基?…

Representative Results

我们表明,小胶质细胞的功能,作为脑响应于使用上述协议的纳米颗粒的替代传感器。我们的结果包括对下游神经元细胞死亡小胶质细胞活化的毒性作用的测量。 图1展示了协议的工作流程来激活的小胶质细胞,并确定是否分泌的细胞因子减少下丘脑神经元的生存力。 TNF-α的分泌显著增加以下AgNP曝光( 图2)。当丘脑神经元是从AgNP活化的小胶质?…

Discussion

Recent studies support that environmental exposure contributes to obesity and other neurodegenerative diseases 11,12. However, techniques used in previous studies are time consuming and expensive. Economic considerations, physiologically relevant delivery systems, ethical issues with extensive use of in vivo animal models, and difficulty translating findings into meaningful health advisories are a few of the major challenges that have impeded advancements in studying NP-induced neurotoxicity 13</…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was funded by the US Department of Veterans Affairs BLR&D IK2 BX001686 (to TAB), and grants from the University of Minnesota Healthy Foods, Healthy Lives Institute (to CMD, JPN, and TAB) and the Minnesota Veterans Medical Research & Education Foundation (to TAB). We thank Drs. Philippe Marambaud (Feinstein Institute for Medical Research, Manhasset, NY) and Weihua Zhao (Methodist Hospital, Houston, TX) for providing the BV2 cell line.

Materials

Cells/Reagents
Mouse microglial cell line (BV2) Interlab Cell Line Collection (Genoa, Italy) ATL03001
Adult Mouse Hypothalamus Cell Line mHypoA-1/2  Cellutions Biosystems Inc. CLU172
Dulbecco’s Modified Eagle’s Medium Invitrogen 10313-039
Fetal bovine serum  PAA Labs A15-751
Penicillin/Streptomycin/Neomycin Thermo Fisher Scientific 15640-055
Trypsin-EDTA Thermo Fisher Scientific 25200056
Silver nanoparticles (20nm) Sigma-Aldrich 730793

PrestoBlue Cell Viability Reagent
Invitrogen A13262
Mouse TNF-α ELISA Max Delux Biolegend 430904
Lipopolysaccharide Sigma-Aldrich L4391
Sodium Citrate Sigma-Aldrich S4641
Equipment
96W Optical Bottom Plate, Black Polystyrene, Cell Culture Treated, with lid, Sterile Thermo Fisher Scientific 165305
Amicon Ultra-0.5 Centrifugal Filter Unit with Ultracel-10 membrane EMD Millipore UFC501008
SpectraMax M5 Multi-Mode Microplate Molecular Devices M5
Falcon 50mL Conical Centrifuge Tubes Corning, Inc
14-432-22
Falcon Cell Strainers 70 μm Corning, Inc 08-771-2
Tabletop centrifuge 5430 Eppendorf 22620560

Referencias

  1. Block, M. L., Calderon-Garciduenas, L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 32, 506-516 (2009).
  2. Brochu, P., Bouchard, M., Haddad, S. Physiological daily inhalation rates for health risk assessment in overweight/obese children, adults, and elderly. Risk Anal. 34, 567-582 (2014).
  3. Jerrett, M., et al. Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis. Environ Health. 13, 49 (2014).
  4. Kraft, A. D., Harry, G. J. Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health. 8, 2980-3018 (2011).
  5. Duffy, C. M., et al. Role of orexin A signaling in dietary palmitic acid-activated microglial cells. Neurosci Lett. 606, 140-144 (2015).
  6. Butterick, T. A., et al. Use of a caspase multiplexing assay to determine apoptosis in a hypothalamic cell model. J Vis Exp. , (2014).
  7. Xiao, J., et al. Monitoring of cell viability and proliferation in hydrogel-encapsulated system by resazurin assay. Appl Biochem Biotechnol. 162, 1996-2007 (2010).
  8. Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., Bistoni, F. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol. 27, 229-237 (1990).
  9. Belsham, D. D., et al. Ciliary neurotrophic factor recruitment of glucagon-like peptide-1 mediates neurogenesis, allowing immortalization of adult murine hypothalamic neurons. FASEB J. 23, 4256-4265 (2009).
  10. Paramelle, D., et al. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst. 139, 4855-4861 (2014).
  11. Wei, Y., et al. Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing. FASEB J. , (2016).
  12. Levesque, S., Surace, M. J., McDonald, J., Block, M. L. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation. 8, 105 (2011).
  13. Block, M. L., et al. The outdoor air pollution and brain health workshop. Neurotoxicology. 33, 972-984 (2012).
  14. Carson, M. J., Crane, J., Xie, A. X. Modeling CNS microglia: the quest to identify predictive models. Drug Discov Today Dis Models. 5, 19-25 (2008).
  15. Valdearcos, M., et al. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep. 9, 2124-2138 (2014).
  16. Perry, V. H., Holmes, C. Microglial priming in neurodegenerative disease. Nat Rev Neurol. 10, 217-224 (2014).
  17. Block, M. L., Hong, J. S. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans. 35, 1127-1132 (2007).
  18. Vincenti, J. E., et al. Defining the Microglia Response during the Time Course of Chronic Neurodegeneration. J Virol. 90, 3003-3017 (2015).
  19. Grabert, K., et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci. 19, 504-516 (2016).
  20. Lull, M. E., Block, M. L. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 7, 354-365 (2010).
  21. Oeckinghaus, A., Hayden, M. S., Ghosh, S. Crosstalk in NF-kappaB signaling pathways. Nat Immunol. 12, 695-708 (2011).
  22. Gifford, J. C., et al. Thiol-modified gold nanoparticles for the inhibition of Mycobacterium smegmatis. Chem Commun (Camb). 50, 15860-15863 (2014).
  23. Colella, M., Lobasso, S., Babudri, F., Corcelli, A. Palmitic acid is associated with halorhodopsin as a free fatty acid. Radiolabeling of halorhodopsin with 3H-palmitic acid and chemical analysis of the reaction products of purified halorhodopsin with thiols and NaBH4. Biochim Biophys Acta. 1370, 273-279 (1998).
  24. Sherry, B., Jue, D. M., Zentella, A., Cerami, A. Characterization of high molecular weight glycosylated forms of murine tumor necrosis factor. Biochem Biophys Res Commun. 173, 1072-1078 (1990).
  25. . PubChem Compound Database Available from: https://pubchem.ncbi.nlm.nih.gov/compound/104755 (2004)
  26. Koenigsknecht-Talboo, J., Landreth, G. E. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci. 25, 8240-8249 (2005).
  27. McCarthy, R. C., et al. Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta. J Neuroinflammation. 13, (2016).
  28. Schauer, J. J., et al. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ. 30, 3837-3855 (1996).
  29. Kleeman, M. J., et al. Source apportionment of fine (PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode. Environ Sci Technol. 43, 272-279 (2009).
  30. Borm, P. J., et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 3, (2006).

Play Video

Citar este artículo
Duffy, C. M., Ahmed, S., Yuan, C., Mavanji, V., Nixon, J. P., Butterick, T. Microglia as a Surrogate Biosensor to Determine Nanoparticle Neurotoxicity. J. Vis. Exp. (116), e54662, doi:10.3791/54662 (2016).

View Video