Summary

为提高训练大鼠绩效的创新运行基于轮机制

Published: September 19, 2016
doi:

Summary

这项研究提出了一个创新型轮运行动物的调动制度的大鼠量化一个有效的锻炼活动。将大鼠友好测试平台构建,使用预定义的自适应加速曲线,并有效地行使率和梗塞体积之间的高相关性表明该协议的中风预防实验潜力。

Abstract

这项研究提出的动物移动性系统,配备有定位跑步轮(PRW),作为一种方法来量化的锻炼活动的功效降低的大鼠中风的影响的严重性。该系统提供了比商用系统,如跑步机和电动跑步轮(MRWs)更有效的动物运动训练。与此相反的MRW,只有能够达到以下速度20米/分钟,只被允许在30米的速度稳定运行/分钟由15厘米宽的丙烯酸轮与支持的更宽敞,高密度橡胶跑道一个直径为55厘米的这项工作。使用预定义的自适应加速曲线,该系统不仅降低了操作错误,但也训练的老鼠,直到达到规定的强度持续运行。作为一种方法来评估锻炼效果,大鼠的实时位置被四对部署在跑轮红外线传感器检测到。一旦自适应加速曲线是使用微控制器发起的,由红外传感器得到的数据自动记录和分析的计算机。为了便于比较,3个星期的训练中使用了跑步机,MRW和PRW老鼠进行的。手术诱导大脑中动脉闭塞(MCAO)后,修饰的神经严重性评分(MNSS)和一个倾斜面测试进行了对神经损伤评估给大鼠。 PRW,实验验证作为该动物移动系统中最有效的。此外,运动效果的措施,根据大鼠位置分析,表明存在有效行使和梗死体积之间的高的负相关,并且可用于量化在任何类型的脑减少损伤实验的大鼠的训练。

Introduction

笔画持续存在,作为一个财政负担在全球范围内的国家,留下了无数患者的身体和智力残疾1,2。有临床证据表明,经常运动可以改善神经再生和神经加强连接3,4,它也表明,锻炼可以降低患缺血性中风5的风险。无论使用哪种跑步机或正在运行的轮作为运动训练系统,啮齿动物,如老鼠,作为代理人类在绝大多数的临床实验测试6演习的有效性 8。一个培训系统通常包括训练老鼠在一定时间内,在此期间,大鼠以一定的速度运行。 8 因此,训练强度是根据运动速度和持续时间6一般计算。同样的方法也适用于估计的运动对神经生理学保护所需的量。然而,实验练习,有时发现是无效的,比如当老鼠绊倒,跌倒,或抓住栏杆,一旦他们无法赶上跑车轮转速9 11。不用说,无效运动的事件显著减少运动益处。即使没有任何普遍接受的做法目前量化减少脑损伤的有效练习,有效的锻炼水平依然矗立作为一个客观的评价,为临床研究来说明神经生理学学科锻炼的好处。

存在于在今天的脑损伤减少实验12中使用市售的动物移动系统许多限制。在跑步机上的情况下,老鼠被迫用电击的方式运行,引起了巨大的心理应力的动物,从而干扰在最终神经生理学测试结果8,13,14。运行车轮可分为两种类型,即自愿和被迫的。自愿转轮让老鼠自然运行,创造到期大鼠的身体特征和能力15的差异过大的可变性,而电动行驶轮(MRWs)采用电机转动轮子,迫使老鼠跑。尽管也被强迫训练的一种形式,MRWs强加给大鼠比跑步机13,16,17心理压力较少。然而,使用MRWs实验已经报道,大鼠通过抓住轮轨道上的轨道和拒绝在速度超过20米/分钟9运行有时中断锻炼。这些例子表明,目前可用的动物移动系统具有固有的缺点,即抑制有效锻炼。对于客观鼠训练目的,一种高效的培训体系的发展,但与低干扰,因此被视为神经生理学实验练习一个紧迫的问题。

这项研究提出关于减少的行程11的影响的严重性为实验一种高效运行的轮系统。除了干扰因素的数量减少时的训练过程中,这个系统利用嵌入在轮,从而实现有效的运动活动的更可靠的估计的红外传感器的大鼠的运行位置。由传统的跑步机和在MRWs都频繁行使中断所施加的心理应激歪斜所得运动估计的客观性。在本研究中提出的定位跑步轮(PRW)系统,以试图最小化不必要的干扰发达而用于量化有效的exe提供了可靠的训练模型rcise。

Protocol

伦理声明:实验过程是由科学技术实验动物中心南台科技大学,国家科学委员会,中华民国(台湾台南)的动物伦理委员会批准。 1.构建跑轮结构注:所有丙烯酸应该是透明的。用清水清洗拆卸车轮,然后用酒精擦拭每次使用后的橡胶履带和亚克力板材。 得到丙烯酸跑轮为55厘米,直径在宽15厘米注意:此轮比传统传动轮(直径= 35厘米;?…

Representative Results

这部分是专门的比较,手术后制成1周,在MNSS分数,斜面测试结果和脑的梗死体积五组之一。 图4A和图4B分别呈现平均MNSS分数和斜面试验结果的平均值。该PRW组作为最好的出现在MNSS改善方面。 PRW和MRW之间以及跑步机和PRW之间的差异显著清楚地表明,PRW更有效地预防中风比目前市面上其他动物的移动系统。倾斜的平面测试在所有的运动组显著陡倾?…

Discussion

这个协议描述了用于减少在动物中的中风的影响的严重性一种高效运行的轮系统。作为一只老鼠友好的测试平台,该平台是在一个稳定的运行速度,可以由老鼠在整个运行过程中通过预定的自适应加速曲线来保持这样一种方式设计为好。在典型的培训制度,培训预置速度和持续时间手动设置。一旦运动开始,达到预设的速度很快。在这种情况下,这是非常可能的是老鼠都无法达到更高的速度,使?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Dr. Jhi-Joung Wang, who is the Vice Superintendent of Education at Chi-Mei Medical Center, and Dr. Chih-Chan Lin from the Laboratory Animal Center, Department of Medical Research, Chi-Mei Medical Center, 901 Zhonghua, Yongkang Dist., Tainan City 701, Taiwan, for providing the shooting venue. They would also like to thank Miss Ling-Yu Tang and Mr. Chung-Ham Wang from the Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan, for their valuable assistance in demonstrating the prototype system in real experiments with rats. The author gratefully acknowledges the support provided for this study by the Ministry of Science and Technology (MOST 104- 2218-E-167-001-) of Taiwan.

Materials

Brushless DC motor Oriental Motor BLEM512-GFS
Motor driver Oriental Motor BLED12A
Motor reducer Oriental Motor GFS5G20
Speedometer Oriental Motor OPX-2A
Treadmill Columbus Instruments Exer-6M
Infrared transmitter  Seeed Studio TSAL6200
Infrared Receiver Seeed Studio TSOP382
Microcontroller Silicon Labs C8051F330
CCD camera Canon Inc. EOS 450D
Image processing software Adobe Systems Incorporated ADOBE Photoshop CS5 12.0
Image analysis Media Cybernetics Pro Plus 4.50.29
Sodium pentobarbital Sigma-Aldrich (Saint Louis, MO, USA) SIGMA P-3761
Ketamine Pfizer (Kent, UK)  1867-66-9
Atropine Taiwan Biotech Co., Ltd. (Taoyuan, Taiwan) A03BA01
Xylazine Sigma-Aldrich (Saint Louis, MO, USA) SIGMA X1126
Buprenorphine Sigma-Aldrich (Saint Louis, MO, USA) B9275
Anesthesia Sigma Chemical

Referencias

  1. Mayo, N. E., Wood-Dauphinee, S., Cote, R., Durcan, L., Carlton, J. Activity, participation, and quality of life 6 months poststroke. Arch Phys Med Rehabil. 83 (8), 1035-1042 (2002).
  2. Duncan, P. W., Goldstein, L. B., Horner, R. D., Landsman, P. B., Samsa, G. P., Matchar, D. B. Similar motor recovery of upper and lower-extremities after stroke. Stroke. 25 (6), 1181-1188 (1994).
  3. Raichlen, D. A., Gordon, A. D. Relationship between exercise capacity and brain size in mammals. PLoS One. 6 (6), (2011).
  4. Trejo, J. L., Carro, E., Torres-Aleman, I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci. 21 (5), 1628-1634 (2001).
  5. Zhang, F., Wu, Y., Jia, J. Exercise preconditioning and brain ischemic tolerance. Neurociencias. 177, 170-176 (2011).
  6. Wang, R. Y., Yang, Y. R., Yu, S. M. Protective effects of treadmill training on infarction in rats. Brain Res. 922 (1), 140-143 (2001).
  7. Ding, Y., et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neurociencias. 124 (3), 583-591 (2004).
  8. Li, J., Luan, X. D., Clark, J. C., Rafols, J. A., Ding, Y. C. Neuroprotection against transient cerebral ischemia by exercise pre-conditioning in rats. Brain Res. 26 (4), 404-408 (2004).
  9. Leasure, J. L., Jones, M. Forced and voluntary exercise differentially affect brain and behavior. Neurociencias. 156 (3), 456-465 (2008).
  10. Chen, C. C., et al. A Forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model. Braz J Med Biol Res. 47 (10), 858-868 (2014).
  11. Chen, C. -. C., et al. Improved infrared-sensing running wheel systems with an effective exercise activity indicator. PLoS One. 10 (4), (2015).
  12. Fantegrossi, W. E., Xiao, W. R., Zimmerman, S. M. Novel technology for modulating locomotor activity as an operant response in the mouse: Implications for neuroscience studies involving "exercise" in rodents. J Neurosci Methods. 212 (2), 338-343 (2013).
  13. Hayes, K., et al. Forced, not voluntary, exercise effectively induces neuroprotection in stroke. Acta Neuropathol. 115 (3), 289-296 (2008).
  14. Arida, R. M., Scorza, C. A., da Silva, A. V., Scorza, F. A., Cavalheiro, E. A. Differential effects of spontaneous versus forced exercise in rats on the staining of parvalbumin-positive neurons in the hippocampal formation. Neurosci Lett. 364 (3), 135-138 (2004).
  15. Waters, R. P., et al. Selection for aerobic capacity affects corticosterone, monoamines and wheel-running activity. Physiol Behav. (4-5), 1044-1054 (2008).
  16. Ke, Z., Yip, S. P., Li, L., Zheng, X. -. X., Tong, K. -. Y. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: A rat brain ischemia model. PLoS One. 6 (2), (2011).
  17. Caton, S. J., et al. Low-carbohydrate high-fat diets in combination with daily exercise in rats: Effects on body weight regulation, body composition and exercise capacity. Physiol Behav. 106 (2), 185-192 (2012).
  18. . C8051F330/1/2/3/4/5 datasheet Available from: https://www.silabs.com/Support%20Documents/TechnicalDocs/C8051F33x.pdf (2006)
  19. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20 (1), 84-91 (1989).
  20. Chen, J. L., et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 32 (4), 1005-1011 (2001).
  21. Chang, M. -. W., Young, M. -. S., Lin, M. -. T. An inclined plane system with microcontroller to determine limb motor function of laboratory animals. J Neurosci Methods. 168 (1), 186-194 (2008).
  22. Gartshore, G., Patterson, J., Macrae, I. M. Influence of ischemia and reperfusion on the course of brain tissue swelling and blood-brain barrier permeability in a rodent model of transient focal cerebral ischemia. Exp Neurol. 147 (2), 353-360 (1997).
  23. Chen, F., et al. Rodent stroke induced by photochemical occlusion of proximal middle cerebral artery: Evolution monitored with MR imaging and histopathology. Eur J Radiol. 63 (1), 68-75 (2007).
  24. Almenning, I., Rieber-Mohn, A., Lundgren, K. M., Lovvik, T. S., Garnaes, K. K., Moholdt, T. Effects of high intensity interval training and strength training on metabolic, cardiovascular and hormonal outcomes in women with polycystic ovary syndrome: a pilot study. PLoS One. 10 (9), (2015).
  25. Costigan, S. A., Eather, N., Plotnikoff, R. C., Taaffe, D. R., Lubans, D. R. High-intensity interval training for improving health-related fitness in adolescents: a systematic review and meta-analysis. Br J Sports Med. 49 (19), (2015).

Play Video

Citar este artículo
Chen, C., Yang, C., Chang, C. An Innovative Running Wheel-based Mechanism for Improved Rat Training Performance. J. Vis. Exp. (115), e54354, doi:10.3791/54354 (2016).

View Video