This paper reports the nanomaterial fabrication of a fullerene Si substrate inspected and verified by nanomeasurements and molecular dynamic simulation.
Cet article présente un tableau conçu C 84 -embedded substrat Si fabriqué en utilisant une méthode d' auto-assemblage contrôlé dans une chambre à vide ultra-haute. Les caractéristiques de la C 84 -embedded surface Si, comme résolution atomique topographie, densité électronique locale d'états, énergie de bande interdite, les propriétés d'émission de champ, la rigidité nanomécanique, et le magnétisme de surface, ont été examinés à l' aide d' une variété de techniques d'analyse de surface sous ultra, vide élevé (UHV), ainsi que les conditions dans un système atmosphérique. Les résultats expérimentaux démontrent la grande uniformité de la C 84 -embedded Si surface fabriqué en utilisant un mécanisme d' auto-assemblage nanotechnologie contrôlé, représente un développement important dans l'application de l' émission de champ d' affichage (FED), la fabrication de dispositifs optoélectroniques, MEMS outils de coupe, et dans les efforts pour trouver un remplacement convenable pour les semi-conducteurs en carbure. La dynamique moléculaire méthode (MD) avec un potentiel semi-empirique peut be utilisée pour étudier la nanoindentation de C 84 -embedded substrat Si. Une description détaillée pour effectuer la simulation MD est présenté ici. Détails pour une étude approfondie sur l'analyse mécanique de simulation MD comme la force d'indentation, le module de Young, la rigidité de la surface, le stress atomique, et la souche atomique sont inclus. Les contraintes et déformations von-Mises atomiques distributions du modèle d'indentation peuvent être calculées pour surveiller le mécanisme de déformation à l'évaluation du temps dans le niveau atomistique.
Molécules de fullerènes et les matériaux composites qui les composent se distinguent parmi les nanomatériaux en raison de leurs caractéristiques structurelles excellentes, la conductivité électronique, résistance mécanique, et les propriétés chimiques 1-4. Ces matériaux se sont avérés très bénéfiques dans un éventail de domaines, tels que l' électronique, l' informatique, la technologie des piles à combustible, les cellules solaires, et la technologie d'émission de champ 5,6.
Parmi ces matériaux, le carbure de silicium (SiC) composites de nanoparticules ont reçu notamment l'attention grâce à leur large écart de bande, à haute conductivité thermique et de la stabilité, la capacité de claquage électrique élevée, et l'inertie chimique. Ces avantages sont particulièrement évidents dans les dispositifs optoélectroniques, transistors à effet de champ métal-oxyde-semiconducteur (MOSFET), diodes électroluminescentes (DEL) et à haute puissance, haute fréquence, et des applications à haute température. Cependant, des défauts de haute densité fréquemment observés sur la surface de Conventicarbure de silicium onal peut avoir des effets néfastes sur la structure électronique, conduisant même à la défaillance du dispositif 7,8. En dépit du fait que l'application de SiC a été étudié depuis 1960, ce problème non résolu reste particulier.
Le but de cette étude était la fabrication d'un C 84 -embedded hétérojonction substrat Si et une analyse ultérieure pour obtenir une compréhension complète des propriétés d'émission électroniques, optoélectroniques, mécaniques, magnétiques, et sur le terrain des matériaux résultants. Nous avons également abordé la question de l'utilisation de la simulation numérique pour prédire les caractéristiques des nanomatériaux, à travers la nouvelle application de calculs de dynamique moléculaire.
Dans cette étude, nous démontrons la fabrication d'une monocouche auto-assemblée de C 84 sur un substrat de Si à travers un nouveau procédé de recuit (figure 1). Ce procédé peut également être utilisé pour préparer d'autres types de substrats semi-conducteurs nanoparticules enrobées. Le C 84 -embedded substrat Si a été caractérisé à l'échelle atomique utilisant UHV-STM (Figure 2), spectromètre à émission de champ, la spectros…
The authors have nothing to disclose.
The authors would like to thank the Ministry of Science and Technology of Taiwan, for their financial support of this research under Contract Nos. MOST-102-2923-E-492- 001-MY3 (W. J. Lee) and NSC-102- 2112-M-005-003-MY3 (M. S. Ho). Support from the High-performance Computing of Taiwan in providing huge computing resources to facilitate this research is also gratefully acknowledged.
Silicon wafer | Si(111) Type/Dopant: P/Boron Resistivity: 0.05-0.1 Ohm.cm | ||
Carbon,C84 | Legend Star | C84 powder, 98% | |
Hydrochloric acid | Sigma-Aldrich | 84422 | RCA,37% |
Ammonium | Choneye Pure Chemical | RCA,25% | |
Hydrogen peroxide | Choneye Pure Chemical | RCA,35% | |
Nitrogen | Ni Ni Air | high-pressure bottle,95% | |
Tungsten | Nilaco | 461327 | wire, diameter 0.3 mm, tip |
Sodium hydroxide | UCW | 85765 | etching Tungsten wire for tip, |
Acetone | Marcon Fine Chemicals | 99920 | suitable for liquid chromatography and UV-spectrophotometry |
Methanol | Marcon Fine Chemicals | 64837 | suitable for liquid chromatography and UV-spectrophotometry |
UHV-SPM | JEOL Ltd | JSPM-4500A | Ultrahigh Vacuum Scanning Tunneling Microscope and Ultrahigh Vacuum Atomic Force Microscope |
Power supply | Keithley | 237 | High-Voltage Source-Measure Unit |
SQUID | Quantum desigh | MPMS-7 | Magnetic field strength: ± 7.0 Tesla, Temperature range: 2 ~ 400 K, Magnetic-dipole range:5 × 10^-7 ~ 300 emu |
ALPS | National Center for High-performance Computing, Taiwan | Advanced Large-scale Parallel Supercluster, 177Tflops; 25,600 CPU cores; 73,728 GB RAM; 1074 TB storage |