Este protocolo demonstra a implementação de um otimizado N-metil-D-glucamine (NMDG) método de recuperação protetora de preparação de fatia do cérebro. Uma formulação única mídia é usada para obter confiavelmente fatias de cérebro saudável de animais de qualquer idade e para diversas aplicações experimentais.
Este protocolo é um guia prático para o N-metil-D-glucamine (NMDG) método de recuperação protetora de preparação de fatia do cérebro. Numerosos estudos recentes têm validado a utilidade desse método para melhorar a preservação neuronal e viabilidade de fatia de cérebro global. A implementação desta técnica por adotantes tem facilitado investigações detalhadas sobre funções cerebrais usando diversas aplicações experimentais e abrangendo uma vasta gama de idades animais, regiões do cérebro e tipos de células. Passos são descritos para a realização da técnica de fatia de cérebro protetora de recuperação usando um otimizado NMDG artificial líquido cefalorraquidiano (aCSF) formulação de mídia e melhorado procedimento confiantemente obter fatias de cérebro saudável para eletrofisiologia de braçadeira do remendo. Com esta abordagem atualizada, observa-se uma melhoria substancial na velocidade e confiabilidade de gigaohm selar formação durante a braçadeira de remendo alvo gravação experiências, mantendo excelente preservação neuronal, facilitando, assim, um desafio aplicações experimentais. Resultados representativos são fornecidos de grampo multi neurônio remendo gravação experimentos a ensaiar conectividade sináptica em fatias de cérebro neocortical preparados a partir de ratos transgênicos adultos jovens e maduros espécimes adultos de neurocirurgia humanos. Além disso, o método de recuperação protetora NMDG otimizado de corte de cérebro é compatível com animais jovens e adultos, portanto, resolvendo uma limitação da metodologia original. Em resumo, uma formulação única mídia e cérebro procedimento de corte podem ser implementados através de diversas espécies e idades para alcançar excelente preservação viabilidade e tecido.
A preparação de fatia cerebral aguda é um sistema de modelo experimental essencial em neurociência. Para cerca de metade de um século, esta plataforma permitiu dinâmicos estudos funcionais do cérebro vivo em uma ampla variedade de espécies animais e regiões anatômicas do cérebro. Se o aplicativo pretendido é bioquímica, morfologia, imagem latente funcional ou eletrofisiologia, é de extrema importância para garantir a integridade ideal e a viabilidade do tecido cortado. É por este motivo que a preparação de fatia do cérebro de roedor juvenil altamente resiliente (i.e., mais jovem do que o pós-Natal dia 30 para ratos) tem sido a mais preferida para a data. A dificuldade na obtenção de cérebro suficientemente saudável fatias do adulto maduro e envelhecimento animais provou para ser um desafio formidável para a maioria e impôs severas limitações para estudar a arquitetura funcional do cérebro maduro. Isto é particularmente verdadeiro para braçadeira do remendo de gravação, uma técnica que exige excelente preservação morfológica e funcional e é indispensável para a caracterização detalhadas propriedades intrínsecas e sinápticas dos neurônios único identificados. Há várias décadas, a grande maioria dos electrophysiologists de braçadeira do remendo têm contado com um método de ‘corte de proteção’ usando sacarose-substituídos baixa at+ aCSF1 fatias de cérebro saudável de juvenil e para um bem menor na preparação extensão, animais jovens e adultos. Este método é baseado na premissa de que a passivo influxo at+ e entrada de água posterior e célula inchaço durante a etapa de corte fatia é o insulto predominante que leva a pobre sobrevivência dos neurônios, particularmente para aqueles neurônios localizado na camadas superficiais que são mais propensos a sustentar o trauma direto do movimento da lâmina. No entanto, o método de proteção de corte ainda deixa muito a desejar para a preparação de fatia de cérebro de animais adultos maduros independentemente a formulação particular aCSF implementado.
Uma solução simples mas eficaz para este problema tem sido descrito2,3,4,5,6 e denominou o método de fatia do cérebro ‘proteção recuperação’. A versão original deste método usa um aCSF NMDG-substituídos, como NMDG foi identificado como o mais versátil e eficaz, entre vários outros candidatos de sódio íon substitutos (incluindo a sacarose, glicerol, colina e Tris). A formulação de mídia foi reforçada pela adição de HEPES resistir edema de fatia do cérebro e fornecer mais forte pH buffer7, bem como a adição de suplementos para neutralizar os efeitos nocivos do estresse oxidativo (tabela 1). Determinou-se empiricamente que uma incubação de recuperação inicial intervir Na baixa+, baixa Ca2 +, e alta Mg2 + NMDG aCSF imediatamente após o corte de tecido do cérebro de um adulto foi necessária e suficiente para melhorado neuronal preservação sob uma grande variedade de regiões do cérebro, tipos de células e animais idades3,5,6.
Notavelmente, encarnações anteriores de que agora é chamado o método de proteção de recuperação podem ser encontradas na literatura1,8,9,10,11,12, 13, apesar de todo o potencial para amadurecer adulto e envelhecimento do cérebro animal fatia e patch braçadeira gravação não foi reconhecido ou demonstrado nestas obras anteriores. Além disso, variações processuais matizadas continuam a surgir para apoiar aplicações específicas experimental4,14,15,16. O corpo coletivo de trabalho desses numerosos grupos de investigação transmite confiança elevada na robustez do método recuperação protetora para preservação de tecido melhorada. O método de recuperação protetora NMDG agora foi amplamente adotado e implementado em inúmeros estudos publicados utilizando preparações de fatia do cérebro de um animal adulto. Estes estudos de fatia aguda abrangem neocortical3,17,18, hipocampo15,19,20,21, striatal22 , 23 , 24, mesencéfalo25,26,,27,28,29e rombencéfalo30,31,32, 33 , regiões de 34 e uma variedade de tipos de neurotransmissor e neuromodelador incluindo glutamatérgico4,30, gabaérgica18,20,31,35 ,36, dopaminergic24,29,37,38, colinérgicos14,37,38, 39, noradrenérgico40e serotoninérgico27,28 neurotransmissão. O método também é apropriado para controle de optogenetic de atividade neuronal em fatias derivados animais transgénicos3,39 ou seguindo na vivo injeções viral17,27, 28,40,41,42,43, como bem como Ca2 + imagem latente funcional da atividade neuronal2,44 ,,45,46. Análises de curto prazo plasticidade4,,47,48 e diversas formas de plasticidade a longo prazo16,35,48 foram relatou. Um estudo recente aplicado o método de recuperação proteção NMDG para facilitar a extensa e sistemática de sondagem de conectividade sináptica no córtex visual em fatias de cérebro de rato adulto maduro usando o octopatch gravar configuração49 — um poderoso demonstração da utilidade e robustez deste método. O método de recuperação proteção nem tem sido aplicado com sucesso em contextos experimentais anteriormente imprevistos, tais como, melhor preservação da vasculatura e pericitos em adultos cérebro cortical fatias50, braçadeira do remendo de gravação de transplantadas as populações interneurônio 1 – 1,5 ano de idade a doença de Alzheimer do mouse modelos20e um cérebro de um adulto fatia do receptor de tráfico ensaio51.
O protocolo seguinte descreve procedimentos passo a passo para implementar um método de recuperação protetora NMDG otimizado de preparação de fatia do cérebro para melhorar a viabilidade das fatias cerebral aguda. Os princípios para melhor preservação neuronal são discutidos, bem como demonstração dos benefícios claros desta metodologia para braçadeira de remendo de neurônio multi complexo gravação experimentos em fatias de cérebro de rato transgénico adulto jovem e adulto maduro fatias de cérebro humano neurocirúrgicos. O protocolo seguinte foi validado para ratos de 21 dias de idade para mais de um anos de idade, bem como quanto a espécimes humanos neurocirúrgicos, derivados de pacientes adultos.
At + Spike-em melhora formação Gigaohm selo e Patch Clamp gravação de sucesso
A versão inicial do método NMDG protetora de recuperação foi projetada especificamente para animais adultos e envelhecimento2,5. Alguns pioneiros também têm procurado aplicar esta metodologia a corte juvenil cérebro animal (ou seja, ratos < 30 dias de idade). No entanto, tem-se observado que em contraste com proeminente visualmente-confirmado neuronal preservação com o método de recuperação protetora de NMDG nesta faixa de idade, formação de selo gigaohm pode frequentemente empata, levando a braçadeira do remendo falha tentativas de gravação. Uma hipótese é que NMDG cações são mais prontamente preso em fatias de cérebro juvenil em relação as fatias do cérebro de um adulto e podem impedir a formação de selo; no entanto, selos gigaohm prontamente podem formar enquanto fatias do cérebro juvenil são totalmente submerso em NMDG aCSF (dados não mostrados), assim indicando que NMDG aCSF por si é não impedir gigaohm selo formação.
A transição rápida de solução de baixo-para-alto at+ após a conclusão da etapa de recuperação inicial cérebro fatia provoca danos nas membranas neuronais e perturba o processo de formação do selo. Isso é intuitivo, dado que a transição de baixo-para-alto at+, frio-quente a temperatura e elevação dramática do Ca2 + para2 + relação Mg coletivamente levam a um forte ressurgimento do espontânea atividade sináptica. Esta fase de rebote inibitório no cérebro procedimento de corte é provável espelhar a lesão de reperfusão após um insulto isquêmico. Assim, ainda mais mitigar danos de membrana neuronal na fase inicial de recuperação que incorporou-se um gradual nd+ espiga-em procedimento em que a elevação da concentração do at+ na câmara de incubação NMDG protetora de recuperação é lentamente e reproducibly elevados com timing preciso. Como o procedimento de recuperação proteção original, a dissociação temporal de at+ elevação de temperatura e elevação de Ca2 +/ mg2 + relação é benéfica. Mas além disso, o at+ pico-no procedimento leva a pequenos aumentos incrementais na concentração extracelular de at+ sobre os primeiros pontos de tempo e grandes aumentos para os pontos de tempo final, proporcionando, assim, o tecido cerebral um oportunidade para melhor acomodar para o aumento dos níveis de at+ . Este procedimento é que uma alternativa ao exchange solução gradual controlada por uma bomba de perfusão ou gravidade linhas de gotejamento que levam a constantes aumentos nos níveis de at+ e exigem atenção para tanto a entrada e a saída para evitar o estouro da câmara de fatia. Notavelmente, neste at+ espiga-em procedimento a osmolalidade da solução na câmara de fatia gradualmente sobe ao longo de vários minutos antes das fatias são retornadas à solução osmolalidade normal, mas isso não afetou negativamente a saúde de fatia ou braçadeira do remendo gravação de sucesso. Uma solução de corte de alta pressão osmótica anteriormente foi usada para preparações de fatia do mesencéfalo para melhor preservar os neurônios de dopamina para remendo braçadeira gravações57,58, demonstrando assim que este temporário hiperosmolaridade pode ser benéfica em alguns contextos.
Implementando um processo otimizado, combinando o método de recuperação proteção NMDG e gradual at+ pico-no passo a utilidade desta metodologia de fatia do cérebro foi estendido para cobrir juvenil com idades animais adultas maduras. Este protocolo atualizado agora é adequado para uma vasta gama de idades animais usando uma única formulação ideal de aCSF NMDG e procedimento. Se necessário, o at+ pico-no procedimento pode ser aplicado com um atraso progressivamente mais longo e/ou curso de tempo mais lento para melhorar a viabilidade das fatias de cérebro de animais mais velhos, e nós fornecemos um guia básico de horários de pico-no recomendado de acordo a animal idade (ver tabela 2). Enquanto nós fornecemos uma estrutura básica apropriada para uma ampla gama de aplicações, etapas avançadas adicionais podem ser exploradas para realçar ainda mais a viabilidade e a longevidade de fatias de cérebro de animais adultos e do envelhecimento. Por exemplo, estratégias de restauração de glutationa são particularmente eficazes neste sentido e podem ser implementadas conforme descrito em outro lugar2,6.
Melhorar o Throughput para desafiar as experiências
A análise da conectividade sináptica por gravação de braçadeira do remendo é uma aplicação exigente que requer excelente preservação da estrutura neuronal e função a fim de alcançar uma alta confiabilidade de sucesso. Como o número de neurônios para ser gravado simultaneamente aumenta linearmente, o nível de dificuldade técnica sobe supralinearmente. Existem numerosos modos de falha, e uma das causas mais frequentes de falhas é a incapacidade de selos de forma adequada gigaohm em uma ou mais das células alvo. Isto pode dramaticamente lento progresso, particularmente quando três ou mais neurônios devem ser registrados simultaneamente. Consistente com o achado de mais rápido gigaohm selo tempo de formação com o método de recuperação proteção otimizado NMDG, houve uma melhora acentuada na taxa de sucesso e taxa de transferência de gravação de braçadeira do remendo do neurônio multi experimentos com ambos os adultos transgênicos fatias de cérebro de rato e fatias de cérebro neurocirúrgicos humano adulto. A maior eficiência é quase certamente atribuível a ambos gigaohm selo formação mais rápida e confiável e a preservação neuronal melhorada das fatias com este protocolo. Embora este protocolo enfoca os benefícios explicitamente para braçadeira de remendo, aplicações de gravação, ganhos semelhantes são antecipados para outras aplicações desafiadoras experimentais onde a viabilidade de fatia do cérebro é primordial.
The authors have nothing to disclose.
Este trabalho foi financiado pelo Instituto Allen para a ciência do cérebro. Os autores desejam agradecer os fundadores de Instituto de Allen, Paul G. Allen e Jody Allen, por sua visão, encorajamento e apoio. Agradecemos também a equipe de suporte técnico do Instituto Allen para realização de genotipagem, criação e cuidados com animais.
Compresstome VF-200 | Precisionary Instruments | VF-200 | Vibrating tissue slicer (recommended) |
N-methyl-D-glucamine | Sigma Aldrich | M2004 | aCSF constituent |
Sodium Chloride | Sigma Aldrich | S3014 | aCSF constituent |
Potassium Chloride | Sigma Aldrich | P5405 | aCSF constituent |
Sodium Phosphate monobasic dihydrate | Sigma Aldrich | 71505 | aCSF constituent |
Sodium Bicarbonate | Sigma Aldrich | S5761 | aCSF constituent |
HEPES | Sigma Aldrich | H4034 | aCSF constituent |
Glucose | Sigma Aldrich | G7021 | aCSF constituent |
Sodium Ascorbate | Sigma Aldrich | A4034 | aCSF constituent |
Thiourea | Sigma Aldrich | T8656 | aCSF constituent |
Sodium pyruvate | Sigma Aldrich | P5280 | aCSF constituent |
Calcium chloride dihydrate | Sigma Aldrich | C7902 | aCSF constituent |
Magnesium Sulfate heptahydrate | Sigma Aldrich | M1880 | aCSF constituent |
2,2,2-Tribromoethanol | Sigma Aldrich | T48402 | Anesthetic component 1 |
2-methyl-2-butanol | Sigma Aldrich | 240486 | Anesthetic component 2 |
Curved blunt forceps | Fine Science Tools | 11065-07 | Brain dissection tools |
Fine dissecting scissors (supercut) | Fine Science Tools | 14058-09 | Brain dissection tools |
Large heavy duty scissors 7'' | Fine Science Tools | 14000-18 | Brain dissection tools |
Metal spatula | Sigma Aldrich | Z511455-1PAK | Brain dissection tools |
Razor blades | VWR | 89031-954 | Brain dissection tools |
Brain Slice Keeper-4 | Automate Scientific | S-BSK4 | brain slice holding chamber |
nylon netting | Warner Instruments | 64-0198 | For building small slice recovery chambers |
Pyrex glass beakers (250 mL) | VWR | 89090-434 | For building small slice recovery chambers |
35 mm plastic dish, round | VWR | 100488-376 | For building small slice recovery chambers |
Gas diffuser stones (10 µm) | Sigma Aldrich | 59277 | For constant carbogenation (fine bubbles) |
Agarose Type I-B | Sigma Aldrich | A0576 | For embedding brain specimens |
Micro loader tips | Eppendorf | 22491229 | For filling patch clamp electrodes |
Sylgard | VWR | 102092-312 | For making a custom dissecting platform |
Hydrochloric acid | Sigma Aldrich | H1758-100ML | For pH adjustment of media |
Sodium Hydroxide | Sigma Aldrich | 221465-25G | For pH adjustment of media |
Potassium Hydroxide | Sigma Aldrich | 221473 | For pH adjustment of media |
Plastic transfer pipets 3 mL graduated | VWR | 89497-676 | For slice transfer |
Zirconium ceramic injector blades | Cadence Specialty Blades | EF-INZ10 | http://cadenceinc.com/ |
KG-33 borosilicate glass capillary w/filament | King Glass Company | custom quote | ID: 0.87mm, OD 1.50mm |
Biocytin | Sigma Aldrich | B4261 | Intern pipette solution |
Phosphocreatine disodium | Sigma Aldrich | P7936 | Intern pipette solution |
Potassium Gluconate | Sigma Aldrich | G4500-100G | Intern pipette solution |
EGTA | Sigma Aldrich | E3889 | Intern pipette solution |
Mg-ATP | Sigma Aldrich | A9187 | Intern pipette solution |
Na2-GTP | Sigma Aldrich | 51120 | Intern pipette solution |
sucrose | Sigma Aldrich | S0389 | Intern pipette solution |
Heated water bath (2.5L) | VWR | 13491-060 | Miscellaneous |
Filter paper rounds | VWR | 28456-022 | Miscellaneous |
Cyanoacrylate glue | Amazon | B000BQRBO6 | Miscellaneous |
Glass petri dish | VWR | 89000-326 | Miscellaneous |
10X Phosphate buffered saline | Sigma Aldrich | P5493 | Miscellaneous |
30 mL syringes | VWR | BD302832 | Miscellaneous |
1 mL syringes | VWR | BD-309628 | Miscellaneous |
25 5/8 gauge needles | VWR | 89219-292 | Miscellaneous |
Thermomixer (w/1.5 mL tube block) | VWR | 89232-908 | To keep agarose molten |