Summary

基于该特征场行人行为人类引起的振动模拟

Published: April 13, 2016
doi:

Summary

的协议,提出了在现场行人行为的特征和所产生的结构响应的模拟。现场试验表明, 确定原地踱步参与者之间的速率和同步率构成了人类引起的负荷的仿真和验证的必要投入。

Abstract

对于纤细轻巧的结构,振动舒适度是越来越多的关注,往往构成重要的设计要求的问题。随着设计的人类活动引起的载荷作用下管辖的动态性能,强大的需求存在的现有负荷模型验证和完善。本贡献使用的内场行人行为的表征三维惯性运动跟踪技术。该技术是在实验室的实验第一次测试与相应的地面反作用力的同时注册。实验包括散步的人,以及有节奏的人类活动,如跳跃和上下摆动。它表明,在登记的运动允许活动的时变起搏率的识别。与人的重量,并在文献中可获得的广义的力模型的应用一起,所识别的时间变起搏率允许为characterize人类造成的负荷。此外,无线运动跟踪器之间的时间同步允许识别所述参与者之间的同步速率。接着,该技术被用在其中的人和感应结构振动的两者的运动被登记一个真实天桥。它示出了其特征场行人行为如何可以适用于模拟的感应结构响应。它表明, 确定原地踱步率和同步率构成了人类引起的负荷的仿真和验证的必要投入。拟议的方法的主要潜在应用是人类与结构相互作用现象的估计和合适的模型对实际交通状况行人之间的相关性的发展。

Introduction

通过效率的经济需求和(新)材料,建筑师和工程师正在推动的界限越来越长建,更高,更轻的结构,实力的不断增强推动。通常情况下,重量轻,修长的结构具有说谎的人类共同的活动,如散步,跑步或跳跃的主导频谱中的一个或多个自然频率。可能是受到(近)共振激发,他们往往过分响应人体运动,造成1令人不安的,甚至有害的振动。这些细长和轻型结构,振动适用性日益受到关注,经常构成重要的设计要求的问题。

人体运动,将所得地面反作用力(GRFS)通常实验在实验室条件下确定的。目前,设计人员不得不依赖 – 假设什么是“保守” – 当量的1-OAD模型,从单人的测力放大的。随着设计通过在高密度人群的动态性能的约束,强大的需求存在当前可用负荷模型的验证和完善。

本协议采用了行人的自然运动的特征三维惯性运动跟踪技术。它示出该信息如何可以被用来定义行人以及相应的感应负载之间的相关性。在随后的步骤中,其特征行人行为用于数值模拟的感应结构响应。与登记的结构响应比较允许量化的不明人-结构交互的现象, 例如 ,效果所添加阻尼因行人的存在。该方法是用于说明全尺度试验一个真正的人行桥,其中结构响应和面值的议案ticipants同时注册。

Protocol

所有的程序是由鲁汶大学附属医院的伦理委员会批准,每个受试者参与前发表了书面知情同意书。 1. 3D运动跟踪:配置和数据采集确保各个传感器完全充电( 图1A)。此步骤需要约1小时,但可以在之前的实际测量的日子进行。按照制造商的计费协议。 MT管理器-数据采集2: 启用与传感器的无线连接,并指定所需的采样率(无线配置&g…

Representative Results

首先,示出的个人的COM附近登记的加速度如何可以用来表征结果GRFS。其结果在这里讨论了行走个别3。完全可比观测制成时有节奏的人类活动, 即,跳跃和上下摆动,被考虑。 图7A和7B示出了连续的垂直脚的力的振幅谱和步行的COM附近注册相应加速度水平定性高度相似即,在形状和频率。该活动的平均起搏速率可以被标识为?…

Discussion

人体运动和由此产生GRFS通常用测力板的应用识别,仪表跑步机以及光学动作捕捉技术,如维科1819 CODA。这些技术的应用是,然而,限制在实验室环境。在回答这个缺点,那允许“自然”的人的行为测量过多次反复,不间断循环创新技术的潜力正在调查20。替代技术包括使用压敏鞋垫系统21或仪表鞋22。这些系统允许接触力的结构上直接测量,但一般只产?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

涉及个人行走的实验与运动和姿势分析实验室鲁汶(MALL)25合作进行的。他们的合作和支持表示感谢。

Materials

MTw Development Kit + MT Manager Software Xsens MTW-38A70G20-1 Development kit with wireless, highly accurate, small and lightweight 3D human motion trackers and accompanying click-in full body straps.
True Impulse Kinetic Measurement System + NDI Open Capture Data Acquisition and Visualization System NDI Northern Digital Inc. 791028 TrueImpulse measures reaction forces exerted by humans during a wide variety of activities.
GMS-24 GeoSIG Ltd Rev. 03.08.2010 (Wireless) accelerometers to register the structural vibrations.
GeoDAS GeoSIG Data Acquisition System GeoSIG Ltd Rev. 03.08.2010 Graphical MS Windows application running under Windows 9x/NT/2000, providing a software interface between users and GeoSIG recorders GSR/GCR/GBV/GT.
PediVib toolbox KU Leuven / Software interface/toolbox to simulate the structural vibrations induced by pedestrians.
Metronome / / A device to indicate the targetted pacing rate of the activity (free applications are available online for pc/laptop/smartphone).

Referencias

  1. Bachmann, H., Ammann, W. . Bachmann vibrations in structures : induced by man and machines. , (1987).
  2. . MTw User Manual Available from: https://www.xsens.com/download/usermanual/MTw_usermanual.pdf (2013)
  3. Van Nimmen, K., Lombaert, G., Jonkers, I., De Roeck, G., Vanden Broeck, P. Characterisation of walking loads by 3D inertial motion tracking. J. Sound Vib. 333 (20), 1-15 (2013).
  4. Northern Digital Inc. . TrueImpulse Kinetic Measurement System User Guide. , (2013).
  5. Racic, V., Pavic, A. Mathematical model to generate near-periodic human jumping force signals. Mech. Syst. Signal Process. 24 (1), 138-152 (2010).
  6. The MathWorks Inc. . MATLAB and Signal Processing Toolbox Release. , (2014).
  7. Van Nimmen, K., Van den Broeck, P. . PediVib 1.0 – A MATLAB toolbox for the simulation of human-induced vibrations. , (2015).
  8. Li, Q., Fan, J., Nie, J., Li, Q., Chen, Y. Crowd-induced random vibration of footbridge and vibration control using multiple tuned mass dampers. J. Sound Vib. 329 (19), 4068-4092 (2010).
  9. Van Nimmen, K. . Numerical and experimental study of human-induced vibrations of footbridges [dissertation]. , (2015).
  10. Middleton, C. . Dynamic performance of high frequency floors [dissertation]. , (2009).
  11. Ingòlfsson, E. T., Georgakis, C. T., Ricciardelli, F., Jönsson, J. Experimental identification of pedestrian-induced lateral forces on footbridges. J. Sound Vib. 330 (6), 1265-1284 (2011).
  12. Racic, V., Brownjohn, J. M. W. Mathematical modelling of random narrow band lateral excitation of footbridges due to pedestrians walking. Comput. Struct. 90-91 (1), 116-130 (2012).
  13. Reynders, E., Roeck, G. De Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis. Mech. Syst. Signal Process. 22 (3), 617-637 (2008).
  14. Bocian, M., Macdonald, J. H. G., Burn, J. F. Biomechanically inspired modeling of pedestrian-induced vertical self-excited forces. J. Bridg. Eng. 18 (12), 1336-1346 (2013).
  15. Živanović, S., Pavić, A., Ingòlfsson, E. T. Modeling spatially unrestricted pedestrian traffic on footbridges. Journal of Structural Engineering. 136 (10), 1296-1308 (2010).
  16. Agu, E., Kasperski, M. Influence of the random dynamic parameters of the human body on the dynamic characteristics of the coupled system of structurecrowd. J. Sound Vib. 330 (3), 431-444 (2011).
  17. . . Vicon Motion Systems Product Manuals. , (2012).
  18. . . CODAmotion Technical data sheet. , (2012).
  19. Meichtry, A., Romkes, J., Gobelet, C., Brunner, R., Müller, R. Criterion validity of 3D trunk accelerations to assess external work and power in able-bodied gait. Gait Posture. 25 (1), 25-32 (2007).
  20. Jung, Y., Jung, M., Lee, K., Koo, S. Ground reaction force estimation using an insole-type pressure mat and joint kinematics during walking. J. Biomech. 47 (11), 2693-2699 (2014).
  21. Liedtke, C., Fokkenrood, S. A., Menger, J. T., van der Kooij, H., Veltink, P. H. Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces. Gait Posture. 26 (1), 39-47 (2007).
  22. Boutaayamou, M., Schwartz, C., et al. Validated extraction of gait events from 3D accelerometer recordings. , 6-9 (2012).
  23. Kavanagh, J. J., Menz, H. B. Accelerometry: A technique for quantifying movement patterns during walking. Gait Posture. 28 (1), 1-15 (2008).
  24. . MALL: Movement and posture Analysis Laboratory Leuven (Interdepartemental research laboratory at the Faculty of Kinisiology and Rehabilitation Sciences) Available from: https://faber.kuleuven.be/MALL/mall.php (2015)

Play Video

Citar este artículo
Van Nimmen, K., Lombaert, G., De Roeck, G., Van den Broeck, P. Simulation of Human-induced Vibrations Based on the Characterized In-field Pedestrian Behavior. J. Vis. Exp. (110), e53668, doi:10.3791/53668 (2016).

View Video