Summary

Het genereren van CRISPR / Cas9 Mediated monoallelische verwijderingen in Enhancer-functie van muis embryonale stamcellen Studie

Published: April 02, 2016
doi:

Summary

Experimental validation of enhancer activity is best approached by loss-of-function analysis. Presented here is an efficient protocol that uses CRISPR/Cas9 mediated deletion to study allele-specific regulation of gene transcription in F1 ES cells which contain a hybrid genome (Mus musculus129 x Mus castaneus).

Abstract

Enhancers control cell identity by regulating tissue-specific gene expression in a position and orientation independent manner. These enhancers are often located distally from the regulated gene in intergenic regions or even within the body of another gene. The position independent nature of enhancer activity makes it difficult to match enhancers with the genes they regulate. Deletion of an enhancer region provides direct evidence for enhancer activity and is the gold standard to reveal an enhancer’s role in endogenous gene transcription. Conventional homologous recombination based deletion methods have been surpassed by recent advances in genome editing technology which enable rapid and precisely located changes to the genomes of numerous model organisms. CRISPR/Cas9 mediated genome editing can be used to manipulate the genome in many cell types and organisms rapidly and cost effectively, due to the ease with which Cas9 can be targeted to the genome by a guide RNA from a bespoke expression plasmid. Homozygous deletion of essential gene regulatory elements might lead to lethality or alter cellular phenotype whereas monoallelic deletion of transcriptional enhancers allows for the study of cis-regulation of gene expression without this confounding issue. Presented here is a protocol for CRISPR/Cas9 mediated deletion in F1 mouse embryonic stem (ES) cells (Mus musculus129 x Mus castaneus). Monoallelic deletion, screening and expression analysis is facilitated by single nucleotide polymorphisms (SNP) between the two alleles which occur on average every 125 bp in these cells.

Introduction

Transcriptionele regulatoire elementen cruciaal zijn voor spatio-temporeel fijnafstelling van genexpressie tijdens de ontwikkeling 1 en wijziging van deze elementen kan leiden tot ziekten door afwijkende genexpressie 2. Veel ziekte-geassocieerde gebieden geïdentificeerd door genoomwijde associatiestudies in niet-coderende gebieden en hebben kenmerken van transcriptie enhancers 3-4. Identificeren enhancers en matchen met de genen die ze reguleren wordt bemoeilijkt doordat zich meestal verscheidene kilobasen verwijderd van de genen die ze reguleren en kan worden geactiveerd in een weefsel-specifieke wijze 5-6. Enhancer voorspellingen zijn vaak gebaseerd op histonmodificatie merken, mediator-cohesin complexen en binding van celtype-specifieke transcriptiefactoren 7-10. Validatie van voorspelde enhancers wordt meestal gedaan door een vector gebaseerde test waarbij de enhancer expressie van een reportergen activeert 11-12. Deze gegevens valuable informatie over de wettelijke mogelijkheden van vermeende enhancersequenties, maar niet hun functie onthullen in hun endogene genomische context of identificeren van de genen die ze reguleren. Genoom bewerking dient als een krachtig middel om de functie van transcriptionele regulatoire elementen in hun endogene context met verlies-van-functie analyse bestuderen.

Recente ontwikkelingen in het genoom van het bewerken, namelijk de CRISPR / Cas9 genoom editing systeem, vergemakkelijken het onderzoek van genoom-functie. De CRISPR / Cas9 is eenvoudig te gebruiken en bruikbaar voor biologische systemen. De Cas9 eiwit is gericht op een specifieke plaats in het genoom van een gids-RNA (gRNA) 13. De SpCas9 / gRNA complex scant het genoom van de beoogde genomische sequentie die moet 5 'een protospacer aangrenzende motief (PAM) sequentie, NGG 14-15. Baseparing van de gRNA om zijn doel, een 20 nucleotide (nt) sequentie die complementair is aan de gRNA, activeert SpCas9 nuclease-activiteit resulteert in een double breuken (DSB) 3 bp stroomopwaarts van de PAM reeks. Specificiteit wordt bereikt door volledige basenparing in het gRNA zaad regio, de 6-12 nt naast de PAM; omgekeerd, niet overeenkomt met 5 'van het zaad worden gewoonlijk getolereerd 16-17. De geïntroduceerde DSB kan worden gerepareerd door de niet-homologe end-joining (NHEJ) DNA repair of homologie gerichte reparatie (HDR) mechanisms.NHEJ DNA herstel veroorzaakt dikwijls insertie / deletie (indels) van enkele bp op de doelplaats die kunnen verstoren het open leeskader (ORF) van een gen. Om grotere deleties in het genoom twee gRNAs, die het gebied van belang flankeren genereren, kan worden gebruikt 18-19. Deze benadering is bijzonder nuttig voor het bestuderen van transcriptionele enhancers geclusterd in locus controle gebieden of super-enhancers die groter zijn dan conventionele versterkers 9,18,20-22 zijn.

Monoallelische schrappingen zijn een waardevol model voor het bestuderen van cis -regeling van transcriptie. De waargenomen Change in transcriptieniveau monoallelische na verwijdering van een versterker correleert met de rol van deze versterker in genregulatie zonder verstorende effecten die kunnen optreden wanneer de transcriptie van beide allelen mogelijk beïnvloed beïnvloeden cellulaire fitness. Evaluatie verminderde expressie is echter moeilijk zonder de mogelijkheid om onderscheiden verwijderd uit het wildtype allel. Bovendien genotypering deleties op elk allel zonder de mogelijkheid om de twee allelen te onderscheiden is moeilijk, vooral bij grote deleties van> 10 kb tot 1 Mb 23, waarbij het ​​moeilijk is om de hele wild type gebied te amplificeren door PCR. Het gebruik van F1-ES-cellen gegenereerd door kruising Mus musculus 129 met Mus castaneus kunnen de twee allelen te onderscheiden door allel-specifieke PCR 18,24. De hybride genoom in deze cellen vergemakkelijkt allelspecifieke deletie screening en expressie analyse. Gemiddeld is er een SNP elke 125 bp tussen de twee genomen, Het verstrekken van flexibiliteit in primer ontwerp voor expressie en genotypering analyses. De aanwezigheid van één SNP kan de primer smelttemperatuur (Tm) beïnvloeden en doelwitspecificiteit in real-time kwantitatieve PCR (qPCR) amplificatie waardoor discriminatie van de twee allelen 25. Verder een mismatch in het 3 'uiteinde van de primer grote invloed op het vermogen van DNA-polymerase om zich vanaf de primer voorkomen amplificatie van de ongewenste allel doel 26. Beschreven in het volgende protocol is het gebruik van F1 ES cellen voor allelspecifieke enhancer deleties van meer dan 1 kb en daaropvolgende expressie analyse met behulp van CRISPR / Cas9 genoom bewerkingssysteem (figuur 1).

Figuur 1
Figuur 1. Enhancer schrapping gebruik CRISPR / Cas9 studeren cis -REGning van genexpressie. (A) F1 ES-cellen gegenereerd door een kruising tussen Mus musculus 129 es Mus castaneus worden gebruikt om te zorgen voor allelspecifieke verwijdering. (B) Two guide RNA (gRNA) worden gebruikt om een grote Cas9 gemedieerde deletie van de enhancerregio induceren. (C) primersets worden gebruikt om grote mono- en bi-allelische deleties identificeren. De oranje primers de primers in de paarse primers de buitenste primers en de groene primers gRNA de flankerende primers. (D) Veranderingen in genexpressie worden bewaakt in de allelspecifieke qPCR. RFU geeft relatieve fluorescentie-eenheden. Klik hier om een grotere versie van deze figuur te bekijken.

Protocol

1. ontwerpen en bouwen van de gRNA Verwijderen transcriptie enhancer regio's maken gebruik van twee gRNAs, een 5 'en een 3' van de regio van belang. Gebruik de muis UCSC genoom browser spoor gegenereerd door de Zhang laboratorium unieke gRNA sequenties te identificeren (http://www.genome-engineering.org 15). Volgende Controleer deze gRNAs en hun aangrenzende PAM voor SNPs en indels het gebruik van online tools die door de Sanger Institute (www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-121…

Representative Results

De hier beschreven protocol gebruikt F1 ES-cellen cis -regeling van genexpressie bestuderen monoallelische enhancer verwijderde cellen gegenereerd met CRISPR / Cas9 genoom bewerking (figuur 1). De gRNA en allelspecifieke primer ontwerp voor genotypering en genexpressie zijn de belangrijkste factoren in deze aanpak. Elk allel-specifieke primer set moet worden gevalideerd door qPCR om allel specificiteit te bevestigen. Allelspecifieke primers die alleen hun genomi…

Discussion

CRISPR / Cas9 gemedieerde genoom editing-technologie biedt een eenvoudige, snelle en goedkope methode voor het genoom modificatie. De methode die hier beschreven voor het genereren en te analyseren monoallelische enhancer schrapping voor functionele enhancer karakterisering maakt gebruik van SNPs in de F1 muizencellen. De voordelen van deze benadering zijn: 1) monoallelische enhancer deleties niet verstorende effecten die plaatsvinden wanneer een kritische enhancer geschrapt beide allelen, dwz een grote verlagi…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

We would like to thank all the members of the Mitchell lab for helpful discussions. This work was supported by the Canadian Institutes of Health Research, the Canada Foundation for Innovation and the Ontario Ministry of Research and Innovation (operating and infrastructure grants held by JAM).

Materials

Phusion High-Fidelity DNA Polymerase NEB M0530S high fidelity DNA polymerase used in gRNA assembly
Gibson Assembly Master Mix NEB E2611L
gRNA_Cloning Vector Addgene 41824 A target sequence is cloned into this vector to create the gRNA plasmid
pCas9_GFP Addgene 44719 Codon-optimized SpCas9 and EGFP co-expression plasmid
AflII NEB R0520S
EcoRI NEB R3101S
Neon Transfection System 100 µL Kit Life Technologies MPK10096 Microporator transfection technology
prepGEM ZyGEM PT10500 genomic DNA extraction reagent
Nucleo Spin Gel & PCR Clean-up Macherey-Nagel 740609.5
High-Speed Plasmid Mini Kit Geneaid PD300
Maxi Plasmid Kit Endotoxin Free  Geneaid PME25
SYBR select mix for CFX Life Technologies 4472942 qPCR reagent
iScript cDNA synthesis kit Bio-rad 170-8891 Reverse transcription reagent
0.25% Trypsin with EDTA Life Technologies 25200072
PBS without Ca/Mg2+ Sigma D8537
0.5M EDTA Bioshop EDT111.500
HBSS Life Technologies 14175095
1M HEPES Life Technologies 13630080
BSA fraction V (7.5%) Life Technologies 15260037
Max Efficiency DH5α competent cells Invitrogen 18258012
FBS ES cell qualified FBS is subjected to a prior testing in mouse ES cells for pluripotency
DMSO Sigma D2650
Glutamax Invitrogen 35050
DMEM Life Technologies 11960069
Pencillin/Streptomycin Invitrogen 15140
Sodium pyruvate Invitrogen 11360
Non-essential aminoacid Invitrogen 11140
β-mercaptoethanol Sigma M7522
96-well plate Sarstedt 83.3924
Sealing tape Sarstedt 95.1994
CoolCell LX Biocision BCS-405 alcohol-free cell freezing container
CHIR99021 Biovision 1748-5 Inhibitor for F1 ES cell culture
PD0325901 Invivogen inh-pd32 Inhibitor for F1 ES cell culture
LIF Chemicon ESG1107 Inhibitor for F1 ES cell culture

Referencias

  1. Sagai, T., Hosoya, M., Mizushina, Y., Tamura, M., Shiroishi, T. Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development. 132 (4), 797-803 (2005).
  2. Kleinjan, D. A., Lettice, L. A. Long-range gene control and genetic disease. Adv Genet. 61, 339-388 (2008).
  3. Visel, A., Rubin, E. M., Pennacchio, L. A. Genomic views of distant-acting enhancers. Nature. 461 (7261), 199-205 (2009).
  4. Maurano, M. T., et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 337 (6099), 1190-1195 (2012).
  5. Heintzman, N. D., et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 459 (7243), 108-112 (2009).
  6. Shen, Y., et al. A map of the cis-regulatory sequences in the mouse genome. Nature. 488 (7409), 116-120 (2012).
  7. Johnson, D. S., Mortazavi, A., Myers, R. M., Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 316 (5830), 1497-1502 (2007).
  8. Rhee, H. S., Pugh, B. F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell. 147 (6), 1408-1419 (2011).
  9. Whyte, W. A., et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 153 (2), 307-319 (2013).
  10. Chen, C. Y., Morris, Q., Mitchell, J. A. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features. BMC Genomics. 13 (1), 152 (2012).
  11. Patwardhan, R. P., et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat Biotechnol. 30 (3), 265-270 (2012).
  12. Melnikov, A., et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol. 30 (3), 271-277 (2012).
  13. Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337 (6096), 816-821 (2012).
  14. Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339 (6121), 819-823 (2013).
  15. Mali, P., et al. RNA-guided human genome engineering via Cas9. Science. 339 (6121), 823-826 (2013).
  16. Hsu, P. D., et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 31 (9), 827-832 (2013).
  17. Cho, S. W., et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24 (1), 132-141 (2014).
  18. Zhou, H. Y., et al. A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential. Genes Dev. 28 (24), 2699-2711 (2014).
  19. Fujii, W., Kawasaki, K., Sugiura, K., Naito, K. Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Res. 41 (20), e187 (2013).
  20. Tuan, D. Y., Solomon, W. B., London, I. M., Lee, D. P. An erythroid-specific, developmental-stage-independent enhancer far upstream of the human ‘beta-like globin’ genes. Proc Natl Acad Sci U S A. 86 (8), 2554-2558 (1989).
  21. Amano, T., et al. Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev Cell. 16 (1), 47-57 (2009).
  22. Li, Y., et al. CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells. PLoS One. 9 (12), e114485 (2014).
  23. Canver, M. C., et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem. 289 (31), 21312-21324 (2014).
  24. Mlynarczyk-Evans, S., et al. X chromosomes alternate between two states prior to random X-inactivation. PLoS Biol. 4 (6), e159 (2006).
  25. Lefever, S., Pattyn, F., Hellemans, J., Vandesompele, J. Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clin Chem. 59 (10), 1470-1480 (2013).
  26. Huang, M. M., Arnheim, N., Goodman, M. F. Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res. 20 (17), 4567-4573 (1992).
  27. Keane, T. M., et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature. 477 (7364), 289-294 (2011).
  28. Yalcin, B., et al. Sequence-based characterization of structural variation in the mouse genome. Nature. 477 (7364), 326-329 (2011).
  29. Gibson, D. G., et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 6 (5), 343-345 (2009).
  30. Gibson, D. G., Smith, H. O., Hutchison, C. A., Venter, J. C., Merryman, C. Chemical synthesis of the mouse mitochondrial genome. Nat Methods. 7 (11), 901-903 (2010).
  31. Ding, Q., et al. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 12 (4), 393-394 (2013).
  32. Basu, S., Campbell, H. M., Dittel, B. N., Ray, A. Purification of specific cell population by fluorescence activated cell sorting (FACS). J Vis Exp. (41), (2010).
  33. Forlenza, M., Kaiser, T., Savelkoul, H. F., Wiegertjes, G. F. The use of real-time quantitative PCR for the analysis of cytokine mRNA levels. Methods Mol Biol. 820, 7-23 (2012).
  34. Wu, J. H., Hong, P. Y., Liu, W. T. Quantitative effects of position and type of single mismatch on single base primer extension. J Microbiol Methods. 77 (3), 267-275 (2009).
  35. Sanyal, A., Lajoie, B. R., Jain, G., Dekker, J. The long-range interaction landscape of gene promoters. Nature. 489 (7414), 109-113 (2012).

Play Video

Citar este artículo
Moorthy, S. D., Mitchell, J. A. Generating CRISPR/Cas9 Mediated Monoallelic Deletions to Study Enhancer Function in Mouse Embryonic Stem Cells. J. Vis. Exp. (110), e53552, doi:10.3791/53552 (2016).

View Video