É apresentada aqui uma descrição unificada de técnicas que podem ser utilizadas para desenvolver, transformar, administrar, e testar a expressão da proteína heteróloga dos probióticos levedura Saccharomyces boulardii.
Development of recombinant oral therapy would allow for more direct targeting of the mucosal immune system and improve the ability to combat gastrointestinal disorders. Adapting probiotic yeast in particular for this approach carries several advantages. These strains have not only the potential to synthesize a wide variety of complex heterologous proteins but are also capable of surviving and protecting those proteins during transit through the intestine. Critically, however, this approach requires expertise in many diverse laboratory techniques not typically used in tandem. Furthermore, although individual protocols for yeast transformation are well characterized for commonly used laboratory strains, emphasis is placed here on alternative approaches and the importance of optimizing transformation for less well characterized probiotic strains. Detailing these methods will help facilitate discussion as to the best approaches for testing probiotic yeast as oral drug delivery vehicles and indeed serve to advance the development of this novel strategy for gastrointestinal therapy.
Os microorganismos probióticos são um meio potencial intrigantes de entrega eficiente e economicamente proteínas heterólogas para o tracto gastrointestinal. Estes organismos são capazes de sobreviver a passagem através do tracto gastrointestinal ainda não colonizam o 1, permitindo que a dosagem controlada e limitação da exposição ao fármaco expressa. Além disso, a capacidade para manipular facilmente destes organismos para a produção de proteína heteróloga em grande escala torna uma alternativa económica para entrega partículas sintéticas. No entanto, o desenvolvimento de uma tal abordagem, como foi recentemente demonstrado utilizando uma estirpe auxotr�ica da levedura Saccharomyces probióticas boulardii 2, requer o conhecimento de técnicas laboratoriais que não são tradicionalmente combinadas dentro de um determinado estudo, variando de levedura e biologia molecular para técnicas de manejo de animais e métodos imunológicos. Assim, embora os procedimentos individuais aqui descritos não são em si novosprotocolos laboratoriais, o objectivo deste manuscrito é apresentar uma introdução unificada para as técnicas necessárias para ensaios experimentais de levedura probiótico como veículos de entrega de fármaco no tracto gastrointestinal de murino. Fornecida é uma compilação de protocolos essenciais para: 1) geração de cepas mutantes auxotróficos de levedura que podem ser facilmente manipulados geneticamente; 2) a transformação de culturas de leveduras para expressar a proteína heteróloga; 3) a administração de levedura recombinante para o intestino através de sonda oral; e 4) recuperação da levedura probiótica recombinante viável a partir do intestino murino e avaliação da sua expressão de proteínas heterólogas.
Em primeiro lugar, apesar de existirem numerosos métodos de selecção positiva e negativa para a manipulação de espécies de levedura, tais como a selecção negativa através do uso de marcadores auxotróficos aumenta tanto a eficiência e a facilidade com que a levedura pode ser transformada e seleccionada. selecção positiva de transformantes utilizando antibióticos, em contrast, aumenta significativamente o custo da manipulação de levedura. Além disso, a selecção de levedura em meio sólido contendo antibióticos pode permitir o aumento do crescimento de colónias não transformadas fundo em relação à selecção de levedura auxotróf ico em queda para fora sintético meios sólidos (observações não publicadas). levedura auxotróficos estirpes é que carecem de enzimas críticas para a síntese de aminoácidos essenciais ou uracilo. Essa levedura pode crescer somente se suplementado com o metabolito falta ou gene metabólica, permitindo assim seleção negativa quando a levedura é banhado em queda sintética fora de mídia que não tem o metabólito essencial. Muitos Saccharomyces comumente utilizadas estirpes laboratoriais cerevisiae são, na verdade já mutantes auxotróficos 3. Industrial, clínico, estirpes de levedura e probióticas, no entanto, são tipicamente prototrófica com a capacidade de sintetizar todos os nutrientes necessários. Para permitir a manipulação genética mais eficiente de tais leveduras, genes auxotróficas podem ser selectivamentepara gerar estirpes que podem ser seleccionados, sem antibióticos. Direccionamento específico de genes marcadores auxotróf icos pode ser conseguida através de ruptura do gene mediada por PCR confiando na recombinação homóloga, ou, mais recentemente, através de CRISPR / Cas9 segmentação 4-6. Alternativamente, a mutagénese UV pode gerar rapidamente mutantes auxotróficos mesmo em cepas de leveduras para os quais a transformação com vários plasmídeos é tecnicamente difícil 7. Enquanto segmentação PCR e CRISPR / Cas9 foram descritos extensivamente em outros lugares, apresentada na primeira parte deste manuscrito é um protocolo detalhado descrevendo uma abordagem de mutagénese UV para criar cepas auxotróficas que permitam seleção negativa, em vez de selecção de antibiótico positivo de transformantes de levedura.
O próximo passo necessário para a utilização de tais estirpes auxotróf iças para a administração oral de proteína heteróloga é a transformação de levedura com ADN de plasmídeo. Uma vez que a primeira transformação bem sucedida de yeast esferoplastos relatados para Saccharomyces cerevisiae, em 1978, 8, numerosas modificações têm sido caracterizados para aumentar a eficiência e a facilidade com que espécies de leveduras pode ser geneticamente modificada. O uso de electroporação para a transformação bem sucedida de ADN em S. cerevisiae foi descrito pela primeira vez em 1985 9 e desde então tem sido melhorada através da adição de incubação de 1 M sorbitol para osmoticamente células de suporte 10. A electroporação eficiência tem sido demonstrado que, além disso, dependem das espécies de leveduras e estirpe, número de células e fase de crescimento, de volume electroporação, intensidade de campo, e os amortecedores 11 específicas. De etilo (LiOAc) transformação de lítio, originalmente descrita por Ito et al. 12, encontra-se entre os protocolos de transformação mais vulgarmente utilizados, uma vez que não requer nenhum equipamento especial. Análises adicionais mostraram que a eficiência de transformação de levedura LiOAc aumenta muito quando as células são recolhidas na fase mid-logde crescimento e estão sujeitas a choque térmico na presença de polietileno glicol (PEG) e de ADN a 42 ° C 12. A incubação de toda a levedura intacta com PEG é essencial para a transformação eficiente, possivelmente através de melhorar a ligação de ADN para a membrana celular, bem como através de outros efeitos sobre a membrana 13. Si lítio também aumenta a permeabilidade das células intactas 14. Embora a maioria laboratório S. cerevisiae pode ser facilmente transformada usando LiOAc transformação 3, outras espécies de levedura pode ser mais eficientemente transformada utilizando protocolos alternativos. Pichia pastoris, por exemplo, é mais eficientemente transformado através de electroporação, em vez de LiOAc transformação 13. É importante, por conseguinte, para testar múltiplos métodos de transformação e para otimizar períodos de incubação e concentração de reagentes ao tentar modificar geneticamente uma cepa de levedura descaracterizado. Este manuscrito descreve, assim, tanto LiOAc transformation e eletroporação como técnicas para a transformação do mutante auxotr�ica e tipo selvagem S. boulardii. Os leitores interessados são encaminhados para comentários recentes para descrições completas da evolução da transformação de levedura, protocolos alternativos e novas discussões de possíveis mecanismos de ação 13,15. Transformação de levedura com o plasmídeo que codifica uma proteína facilmente detectável, além disso, é essencial para o teste a jusante, a fim de assegurar a expressão e função da proteína heteróloga adequada. proteínas miríade de diferentes podem ser selecionados dependendo do objetivo final do estudo terapêutico e os anticorpos disponíveis para a detecção de proteína por immunoblotting, ELISA, e outras técnicas. Os protocolos para estas técnicas têm sido exaustivamente descritos em outra parte 16,17, e pode ser utilizado para determinar os níveis de produção de proteína heteróloga a partir de levedura transformada por comparação com curvas padrão. Para fins de demonstração e para mostrarprodução bem sucedida de uma proteína muito vulgarmente utilizados na biologia de levedura, este manuscrito apresenta transformação com o plasmídeo que codifica a proteína verde fluorescente (GFP), o que permite a detecção subsequente utilizando microscopia de fluorescência.
Igualmente importante para a produção de organismos probióticos que expressam a proteína heteróloga é a correcta administração e detecção destes microrganismos em tecidos gastrointestinais, como descrito nas partes três e quatro. A administração de levedura recombinante através de sonda oral permite a entrega de quantidades controladas de levedura directamente no estômago, a partir do qual ratinhos C57BL / 6 são, naturalmente, incapazes de vómitos 18. No entanto, lidar com os animais imprópria e gavage pode levar a danos de esôfago e perfuração, perfuração gástrica, administração traqueal e pneumonia de aspiração 19,20. A dificuldade técnica e inexperiência pode ainda aumentar a variabilidade na resposta imune de murino e resu experimentallts, que foram atribuídos ao estresse dos animais mediante sonda oral 21,22. Prática na técnica apropriada pode, portanto, não apenas atenuar desconforto ao animal, mas também pode aumentar a precisão dos resultados experimentais. Este manuscrito descreve e demonstra manejo dos animais e sonda oral para a administração de doses controladas de levedura recombinante.
Por fim, é vital para confirmar a entrega bem sucedida de levedura recombinante através da análise de tecidos linfóides para a presença de levedura e proteína heteróloga. Os tecidos gastrointestinais imunes que podem ser mais facilmente e previsivelmente examinados para a presença de leveduras são placas de Peyer. Placas de Peyer são órgãos linfóides secundários ao longo do intestino delgado, que são locais-chave da mucosa indução de resposta imune 23. Antígenos do lúmen são transferidos transcelular através microfold células (M) no epitélio e são libertados para placas de Peyer, expondo assim delimitard células apresentadoras de antígenos para intestinal conteúdo luminal. Embora a captação de partículas através do epitélio intestinal pode também ser conseguida por células caliciformes, estas células têm sido mostrados para só ocupam partículas inferior a 0,02 um de diâmetro 24. Dendrites transepitelial prorrogado a partir de células dendríticas CD103 + (DC) também ocupam pequenas partículas do intestinal lumen 25; No entanto, não existem actualmente relatórios que provam que CD103 + DCs ocupam as partículas maiores do que as bactérias. Assim, a levedura intacta probiótico, de tamanho médio entre 3-6 um de diâmetro, são mais susceptíveis de serem absorvidos pelas células M e transferidas para placas de Peyer. Aqui descrito é um protocolo para a recolha e rastreio de placas de Peyer de levedura recombinante viável, embora este procedimento pode também ser facilmente adaptada para avaliar a absorção de bactérias probióticas.
Em resumo, a avaliação de levedura recombinante probiótico para a entrega doproteínas rapeutic para o intestino requer proficiência em técnicas laboratoriais que medem biologia molecular para manejo dos animais e imunologia. Aqui apresentadas são protocolos para 1) a geração e rastreio de estirpes de levedura auxotróf icos que pode ser facilmente seleccionadas negativamente sem antibióticos, 2) protocolos alternativos para transformar a levedura e permitir a expressão da proteína heteróloga, 3) demonstrações de técnicas de manipulação de animais apropriados e gavagem oral para intragástrico entrega de levedura recombinante, e 4) para protocolos de dissecção e placas de Peyer a triagem para levedura recombinante viável e funcional proteína heteróloga. Combinados, estes protocolos permitirá a geração e teste de uma estirpe de levedura capaz de entregar probiótico proteína terapêutica heterólogo para o tracto gastrointestinal.
Juntos, os protocolos aqui descrever os passos essenciais necessários para o desenvolvimento e teste de estirpes probióticas de levedura auxotróficos para a entrega de proteína terapêutica heterólogo para o intestino. Esta manipulação e teste de levedura probiótica recombinante requer técnicas e recursos com os quais qualquer laboratório indivíduo não pode actualmente ser familiar. Assim, apesar de numerosos estudos anteriores descreveram os protocolos acima para várias cepas de leveduras e do rato, esses …
The authors have nothing to disclose.
Os autores reconhecem o financiamento através do Centro Infantil de Imunologia e Vacinas e um Innovator Award New NIH (1DP2AI112242-01) atribuído à Tracey J. Lamb. Os autores também agradecem Natalya P. Degtyareva para a contribuição generosa de S. rad1 cerevisiae.
SmartSpec 3000 Spectrophotometer | BioRad | 170-2501 | Example of spectrophotometer for determining cell concentration and OD600 of yeast cultures |
New Brunswick Roller Drum | Eppendorf | M1053-4004 | Example of roller drum for yeast culture incubation |
UV Stratalinker 2400 | Stratagene | 400075-03 | Example stratalinker |
Stuart Colony Counter SC6PLUS | 11983044 | Fisher Scientific | Plate stand with magnification records colony count upon sensing pressure from pen |
Scienceware Colony Counter | F378620002 | Bel-Art Scienceware | Hand held colony counter pen |
Replica plating device | Fisherbrand | 09-718-1 | Example of replica plating stand and pads |
Velveteen squares | Fisherbrand | 09-718-2 | |
L shaped sterile cell spreaders | Fisherbrand | 14665230 | |
Deoxyribonucleic acid, single stranded from salmon testes | Sigma-Aldrich | D7656-1ML | Example carrier DNA for yeast LiOAc transformation |
Gavage needles | Braintree Scientific | N-PK 002 | For mice 15-20 g, the suggested needle is a 22 gauge (1.25 mm ball), 1 in long, straight reusable gavage needle. For mice weighing greater than 20 g, 20 gauge or larger straight or curved gavage needles may be used |
1mL sterile slip-tip disposable tuberculin syringe | Becton Dickinson | BD 309659 | |
Blunt forceps such as Electron Microscopy Sciences 7" (178 mm) serrated tip, broad grip forceps | Electron Microscopy Sciences | 77937-28 | Example of blunt forceps needed for dissection |
Straight and curved dissection scissors | Electron Microscopy Sciences | 72966-02 and 72966-03 | Examples of scissors needed for dissection |
IMDM | Life technologies | 12440053 |