Summary

非侵入电脑刺激蒙太奇的人体运动功能的调节

Published: February 04, 2016
doi:

Summary

非侵入性的电脑刺激能调节大脑皮质功能和行为,既为研究和临床用途。这个协议描述了人体运动系统的调制不同脑刺激的方法。

Abstract

非侵入性的电脑刺激(NEBS)用于调制大脑功能和行为,既为研究和临床用途。特别是,NEBS可经颅或者作为直流电刺激(TDCS)或交流电刺激(TACS)施加。这些刺激类型的发挥时间,剂量和在运动功能和技巧在健康受试者学习TDCS特定极性效应的情况下。最近,TDCS已被用于增强肢体残疾的患者中风或运动障碍的治疗。本文提供了一个一步一步的协议目标与TDCS和经颅随机噪声刺激(TRNS)初级运动皮层,使用预先定义的频率范围内随机应用的电流TACS的具体形式。两种不同的刺激蒙太奇的设置进行解释。在这两个蒙太奇的发射电极(阳极为TDCS)放置在所感兴趣的主要运动皮层。对于单侧运动皮质的刺激接收电极放置在对侧前额上,而对于双边运动皮质的刺激接收电极放置在相对的主运动皮层。的优点和各蒙太奇皮质兴奋性和包括学习运动功能的调制的缺点进行了讨论,以及安全性,耐受性和致盲方面。

Introduction

非侵入性的电脑刺激(NEBS),的电流到大脑的通过完整头骨的施用,可以修改大脑功能和行为1 – 3。为了优化的NEBS的战略理解,导致神经生理学和行为影响的内在机制仍需要治疗潜力。在不同的实验室应用和刺激程序完全透明的标准化提供了数据的可比性,它支持拟议的行动机制的结果和评价的可靠解释的基础。经颅直流电刺激(TDCS)或经颅交流电刺激(TACS)由所施加的电流的参数不同:TDCS由两个电极(阳极和阴极)2之间的一个单向恒定电流流动 6,同时 TACS使用施加的交流电流在特定频率7。颅随机噪声刺激(TRNS)是TACS的一种特殊形式,它使用在随机的频率施加的交流电流例如,100-640赫兹),导致迅速变化的刺激强度和除去极性相关的影响4,6,7。极性是仅相关性,如果刺激设置包括刺激补偿 ,例如,噪声频谱随机地改变周围1毫安基线强度(通常不使用)。对于本文的目的,我们将使用的电机系统TDCS和TRNS的影响,密切关注到我们的实验室6最近的一份出版物集中精力工作。

TRNS的作用的基本机制甚至更少理解比TDCS的但与后者可能不同。从理论上讲,在随机共振的概念框架TRNS推出刺激诱发的噪点为神经系统,它可以通过改变日提供一种信号处理的好处Ë信噪比4,8,9。 TRNS可主要放大较弱的信号,从而可以优化特定任务的大脑活动(内源性噪音9)。阳极TDCS增加由自发的神经元放电率10变更指示或增加运动诱发电位(MEP)皮质兴奋振幅2中战胜了几分钟到几小时的持续刺激作用。在被称为长时程增强突触效能持久的增加被认为有助于学习和记忆。事实上,阳极TDCS提高运动皮层突触由弱突触输入11多次激活突触效能。根据,改进的运动功能/技能获取常常显露仅当刺激是共同施加有马达训练11 – 13,也表明突触共激活,因为这活性依赖性过程的一个先决条件。然而,在C的增加之间的因果关系ortical兴奋性(增加的燃烧率或MEP振幅)一方面和改善突触效能另一方面(LTP或行为功能如马达学习)尚未得到证实。

NEBS施加到初级运动皮层(M1)已经吸引了越来越多的关注是安全,有效的方法调节人体运动功能1。神经生理效应和行为结果可以取决于刺激策略例如,TDCS极性或TRNS),电极的大小和蒙太奇4 6,14,15。除了 ​​主题固有解剖和生理因素电极蒙太奇显著影响的电场分布,并且可能导致在皮层16内传播的电流不同的模式 18。除了 ​​电极的施加的电流的大小的强度确定交付3的电流密度。公共电极蒙太奇在人体运动系统的研究包括( 图1):1)阳 ​​极TDCS 单方面M1刺激与位于感兴趣的M1与位于对侧额头上的阴极的阳极;这种方法的基本思想是在感兴趣的6,13,19 M1兴奋的上调 22; 2)阳极TDCS 双边M1刺激(也被称为与位于感兴趣的M1与位于对侧M1 5,6,14,23,24阴极阳极“bihemispheric”或“双重”刺激);这种方法的基本思想是通过兴奋性的上调在感兴趣的M1最大化刺激好处,同时在相反的M1下调兴奋性即,两个M1S之间纵裂抑制的调制); 3)TRNS,只有上面提到的单方面刺激M1蒙太奇一直investigated 4,6;与此蒙太奇兴奋性增强TRNS的影响已被发现为100-640赫兹4的频谱。脑刺激策略和电极蒙太奇的选择代表了在临床或研究设置的有效和可靠的使用NEBS的一个关键步骤。这里作为人类电机系统用于研究和方法和概念方面进行了讨论这三个NEBS过程进行详细说明。为单侧或双侧TDCS和单边TRNS材料是相同的( 图2)。

图1
图1.电极蒙太奇和不同的NEBS战略电流方向。(一)单边阳极经颅直流电刺激(TDCS),阳极集中在感兴趣的初级运动皮层和阴极定位在ŧ他对侧眶上区域。 二)双边运动皮层刺激,阳极和阴极都位于每过一台电机皮质。阳极的位置决定的为阳极TDCS感兴趣的运动皮层。 三)对于单边经颅随机噪声刺激(TRNS),一个电极位于上运动皮层和在对侧眶上区域的另一个电极。电极之间的电流流动是由黑色箭头表示。阳极(+,红色),负极( – ,蓝色),交流电(+/-,绿色)。 请点击此处查看该图的放大版本。

Protocol

伦理学声明 :人类研究需要进入研究前参与者的书面知情同意书。获得由参加者招募前相关伦理委员会批准。确保研究是符合赫尔辛基宣言。这里报告的调查结果代表(图4)的基础上,根据赫尔辛基的第 59届WMA大会,首尔,2008年10月修订和弗赖堡大学的地方伦理委员会批准的宣言进行的一项研究。所有受试者都给研究项目前6名的书面知情同意书。 …

Representative Results

调查NEBS的人体运动系统的影响是要考虑适当成果的措施是非常重要的。电机系统的一个优点是由电生理工具皮质表示的可访问性。运动诱发电位经常用作马达皮质兴奋的一个指标。在29微安/ cm 2的电流密度应用的9分钟或更长阳极TDCS后,马达皮质兴奋进行至少30分钟,在大多数的健康志愿者19,21,22( 也参见图3)的增加。阴极TDCS大?…

Discussion

本协议描述的典型材料,并使用NEBS,特别是单侧和双侧M1刺激阳极TDCS,和单边TRNS学习手运动功能的调节和技能的程序步骤。前选择一个特定的NEBS协议用 ​​于人体运动系统的研究中, 例如 ,在运动学习,方法方面的背景下(安全性,耐受,致盲)以及概念方面(在特定的脑区域蒙太奇或电流类型特异性效应)需要被考虑在内。优点和三种策略的限制将在表1中。

<table fo:k…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

MC和JR是由德国研究基金会(DFG RE 2740 / 3-1)的支持。

Materials

NEBS device (DC Stimulator plus) Neuroconn
Electrode cables Neuroconn
Conductive-rubber electrodes Neuroconn 5×5 cm
Perforated sponge bags Neuroconn 5×5 cm
Non-conductive rubber sponge cover Amrex-Zetron FG-02-A103 Rubber pad 3"*3"
NaCl isotonic solution  B. Braun Melsungen AG  A1151 Ecoflac, 0,9%
Cotton crepe bandage Paul Hartmann AG 931004 8x5m, textile elasticity
Adhesive tape (Leukofix) BSN medical 02122-00 2,5cm*5m
Skin preparation paste Weaver 10-30
Magnetic stimulator Magstim 3010-00 Magstim 200
EMG conductive paste GE Medical Systems 217083
EMG bipolar electrodes e.g., Natus Medical Inc. Viking 4 
EMG amplifier e.g., Natus Medical Inc. Viking 4 
Cable for EMG signal transmission e.g., Natus Medical Inc. Viking 4
Data acquisition unit  Cambridge Electronic Design (CED) MK1401-3 AD converter
Computer for signal recording and offline analysis
Signal 4.0.9 Cambridge Electronic Design (CED) Software
non-permanent skin marker Edding 8020 1 mm, blue

Referencias

  1. Reis, J., Fritsch, B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol. 24 (6), 590-596 (2011).
  2. Nitsche, M., Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 527 (3), 633-639 (2000).
  3. Nitsche, M. A., Cohen, L. G., et al. Transcranial direct current stimulation: State of the art. Brain Stimul. 1 (3), 206-223 (2008).
  4. Terney, D., Chaieb, L., Moliadze, V., Antal, A., Paulus, W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 28 (52), 14147-14155 (2008).
  5. Kidgell, D. J., Goodwill, A. M., Frazer, A. K., Daly, R. M. Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex. BMC Neurosci. 14 (1), 64 (2013).
  6. Prichard, G., Weiller, C., Fritsch, B., Reis, J. Brain Stimulation Effects of Different Electrical Brain Stimulation Protocols on Subcomponents of Motor Skill Learning. Brain Stimul. 7 (4), 532-540 (2014).
  7. Antal, A., Paulus, W., Hunter, M. A. Transcranial alternating current stimulation ( tACS ). Front Hum Neurosci. 7, 1-4 (2013).
  8. Collins, J. J., Chow, C. C., Imhoff, T. T. Stochastic resonance without tuning. Nature. 376 (6537), 236-238 (1995).
  9. Miniussi, C., Harris, J. A., Ruzzoli, M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 37 (8), 1702-1712 (2013).
  10. Bindman, L. J., Lippold, O. C., Redfearn, J. W. the Action of Brief Polarizing Currents on the Cerebral Cortex of the Rat (1) During Current Flow and (2) in the Production of Long-Lasting After-Effects. J Physiol. 172, 369-382 (1964).
  11. Fritsch, B., Reis, J., et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron. 66 (2), 198-204 (2010).
  12. Galea, J. M., Celnik, P. Brain polarization enhances the formation and retention of motor memories. J Neurophysiol. 102 (1), 294-301 (2009).
  13. Reis, J., Fischer, J. T., Prichard, G., Weiller, C., Cohen, L. G., Fritsch, B. Time- but Not Sleep-Dependent Consolidation of tDCS-Enhanced Visuomotor Skills. Cereb Cortex. (1), 1-9 (2013).
  14. Saiote, C., Turi, Z., Paulus, W., Antal, A. Combining functional magnetic resonance imaging with transcranial electrical stimulation. Front Hum Neurosci. 7 (8), 435 (2013).
  15. Sehm, B., Kipping, J., Schäfer, A., Villringer, A., Ragert, P. A Comparison between Uni- and Bilateral tDCS Effects on Functional Connectivity of the Human Motor Cortex. Front Hum Neurosci Neurosci. 7 (4), 183 (2013).
  16. Moliadze, V., Antal, A., Paulus, W. Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin Neurophysiol. 121 (12), 2165-2171 (2010).
  17. Bikson, M., Rahman, a., Datta, a. Computational Models of Transcranial Direct Current Stimulation. Clin EEG Neurosci. 43 (3), 176-183 (2012).
  18. Opitz, A., Paulus, W., Will, A., Thielscher, A. Determinants of the electric field during transcranial direct current stimulation. Neuroimage. 109, 140-150 (2015).
  19. Nitsche, M., Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 57 (10), 1899-1901 (2001).
  20. Reis, J., Schambra, H. M., et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 106 (5), 1590-1595 (2009).
  21. Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. -. F., Nitsche, M. a Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 591 (7), 1987-2000 (2013).
  22. Wiethoff, S., Hamada, M., Rothwell, J. C. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 7 (3), 468-475 (2014).
  23. Mordillo-Mateos, L., Turpin-Fenoll, L., et al. Effects of simultaneous bilateral tDCS of the human motor cortex. Brain Stimul. 5 (3), 214-222 (2012).
  24. Tazoe, T., Endoh, T., Kitamura, T., Ogata, T. Polarity Specific Effects of Transcranial Direct Current Stimulation on Interhemispheric Inhibition. PLoS One. 9 (12), e114244 (2014).
  25. Keel, J. C., Smith, M. J., Wassermann, E. M. A safety screening questionnaire for transcranial magnetic stimulation. Clin Neurophysiol. 112, 720 (2000).
  26. Villamar, M. F., Volz, M. S., Bikson, M., Datta, A., Dasilva, A. F., Fregni, F. Technique and considerations in the use of 4×1 ring high-definition transcranial direct current stimulation (HD-tDCS). J Vis Exp. (77), e50309 (2013).
  27. Brasil-Neto, J. P., Cohen, L. G., Panizza, M., Nilsson, J., Roth, B. J., Hallett, M. Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity. J Clin Neurophysiol. 9 (1), 132-136 (1992).
  28. Mills, K., Boniface, S., Schubert, M. Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalogr Clin Neurophysiol. 85 (1), 17-21 (1992).
  29. Rothwell, J., Hallett, M., Berardelli, A., Eisen, A., Rossini, P., Paulus, W. Magnetic stimulation motor evoked potentials. Electroencephalogr Clin Neurophysiol Suppl. 52, 97-103 (1999).
  30. Ueno, S., Tashiro, T., Harada, K. Localized stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. J Appl Phys. 64 (10), 5862-5864 (1988).
  31. Fleming, M. K., Sorinola, I. O., Newham, D. J., Roberts-Lewis, S. F., Bergmann, J. H. M. The effect of coil type and navigation on the reliability of transcranial magnetic stimulation. IEEE Trans Neural Syst Rehabil Eng. 20 (5), 617-625 (2012).
  32. Brunoni, A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G., Fregni, F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 14 (8), 1133-1145 (2011).
  33. Palm, U., Reisinger, E., et al. Brain Stimulation Evaluation of Sham Transcranial Direct Current Stimulation for Randomized, Placebo-Controlled Clinical Trials. Brain Stimul. 6 (4), 690-695 (2013).
  34. Sehm, B., Schäfer, A., et al. Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation. J Neurophysiol. 108 (12), 3253-3263 (2012).
  35. Nitsche, M. A., Schauenburg, A., et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 15 (4), 619-626 (2003).
  36. Antal, A., Begemeier, S., Nitsche, M. A., Paulus, W. Prior state of cortical activity influences subsequent practicing of a visuomotor coordination task. Neuropsychologia. 46 (13), 3157-3161 (2008).
  37. Kang, E. K., Paik, N. J. Effect of a tDCS electrode montage on implicit motor sequence learning in healthy subjects. Exp Transl Stroke Med. 3 (1), 4 (2011).
  38. Kantak, S. S., Mummidisetty, C. K., Stinear, J. W. Primary motor and premotor cortex in implicit sequence learning – Evidence for competition between implicit and explicit human motor memory systems. Eur J Neurosci. 36 (5), 2710-2715 (2012).
  39. Nissen, M. J., Bullemer, P. Attentional requirements of learning: Evidence from performance measures. Cogn Psychol. 19 (1), 1-32 (1987).
  40. Stagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M., Johansen-berg, H. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia. 49 (5), 800-804 (2011).
  41. Poreisz, C., Boros, K., Antal, A., Paulus, W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 72 (4-6), 208-214 (2007).
  42. Gandiga, P. C., Hummel, F. C., Cohen, L. G. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 117 (4), 845-850 (2006).
  43. Baudewig, J., Nitsche, M. A., Paulus, W., Frahm, J. Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magn Reson Med. 45 (2), 196-201 (2001).
  44. Venkatakrishnan, A., Sandrini, M. Combining transcranial direct current stimulation and neuroimaging: novel insights in understanding neuroplasticity. J Neurophysiol. 107 (1), 1-4 (2012).
  45. Neuling, T., Wagner, S., Wolters, C. H., Zaehle, T., Herrmann, C. S. Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Frontiers in Psychiatry. 3, 1-10 (2012).
  46. Bikson, M., Rahman, A. Origins of specificity during tDCS anatomical, activity-selective, and input-bias mechanisms. Front Hum Neurosci. 7, 1-5 (2013).
  47. Truong, D. Q., Hüber, M., et al. Brain Stimulation Clinician Accessible Tools for GUI Computational Models of Transcranial Electrical Stimulation BONSAI and SPHERES. Brain Stimul. 7 (4), 521-524 (2014).
  48. Caparelli-Daquer, E. M., Zimmermann, T. J., et al. A Pilot Study on Effects of 4×1 High-Definition tDCS on Motor Cortex Excitability. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. , 735-738 (2012).
  49. Kuo, H. I., Bikson, M., et al. Comparing cortical plasticity induced by conventional and high-definition 4 x 1 ring tDCS: A neurophysiological study. Brain Stimul. 6 (4), 644-648 (2013).

Play Video

Citar este artículo
Curado, M., Fritsch, B., Reis, J. Non-Invasive Electrical Brain Stimulation Montages for Modulation of Human Motor Function. J. Vis. Exp. (108), e53367, doi:10.3791/53367 (2016).

View Video