Cartilage repair represents an unmet medical challenge and cell-based approaches to engineer human articular cartilage are a promising solution. Here, we describe three-dimensional (3D) biomimetic hydrogels as an ideal tool for the expansion and maturation of human articular chondrocytes.
Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development.
With its limited self-repair potential, human articular cartilage undergoes frequent irreversible damages. Extensive efforts are currently focused on the development of efficient cell-based approaches for treatment of articular cartilage injuries. The success of these cell-based therapies is highly dependent on the selection of an optimal cell source and the maintenance of its regenerative potential. Chondrocytes are a common cell source for cartilage repair, but they are limited in supply and can de-differentiate during in vitro expansion in 2D monolayer culture thereby limiting their generation of hyaline cartilage 1.
The aim of this protocol is to establish a 3-dimensional hydrogel platform for an in vitro comparative study of human chondrocytes from different ages and disease state. Unlike conventional two-dimensional (2D) culture, three-dimensional (3D) hydrogels allow chondrocytes to maintain their morphology and phenotype and provides a physiologically relevant environment enabling chondrocytes to produce cartilage tissue 2,3. In addition to providing a 3D physical structure for chondrocyte culture, hydrogels mimic the function of native cartilage extracellular matrix (ECM). Specifically, the inclusion of chondroitin sulfate methacrylate provides a potential reservoir for secreted paracrine factors 4 and enables cell-mediated degradation and matrix turnover 5. Although many 3D hydrogel culture systems have been utilized widely in various studies including agarose and alginate gels, we have used a biomimetic 3D culture system that has some distinct advantages for chondrocyte culture. Chondroitin sulfate (CS) is an abundant component in articular cartilage and the PEG-CS hydrogels have been shown to maintain and even enhance chondrogenic phenotype and facilitate cell-mediated matrix degradation and turnover 2,5. In addition, the mechanical properties of the hydrogel scaffold can be easily modulated by changing concentration of PEG and hence can be utilized to further enhance the regeneration potential of chondrocytes or a related cell type 6,7. PEG/CSMA is also biocompatible and hence has the potential for a direct clinical application in cartilage defects for example. The limitation for this system is its complexity and the use of photopolymerization that can potentially affect cell viability as compared to simpler systems like agarose, however the advantages for the chondrocyte culture outweigh the potential limitations.
The 3D hydrogel culture is compatible with conventional assay for evaluation of cell phenotype (gene expression, protein immunostaining) and functional outcome (quantification of cartilage matrix production, mechanical testing). This favorable 3D environment was tested to compare the tissue regeneration potential of human chondrocytes from three different aged populations in long-term 3D cultures.
The outcomes were evaluated via both phenotypic and functional assays. Juvenile, adult and OA chondrocytes showed differential responses in the 3D biomimetic hydrogel culture. After 3 and 6 weeks, chondrogenic gene expression was upregulated in juvenile and adult chondrocytes but was downregulated in OA chondrocytes. Deposition of cartilage tissue components including aggrecan, type II collagen, and glycosaminoglycan (GAG) was high for juvenile and adult chondrocytes but not for OA chondrocytes. The compressive moduli of the resulting cartilage constructs also exhibited similar trends. In conclusion, both juvenile and adult chondrocytes exhibited chondrogenic and cartilage matrix disposition up to 6 weeks of 3D culture in hydrogels. In contrast, osteoarthritic chondrocytes revealed a loss of cartilage phenotype and minimal ability to generate robust cartilage.
Como se informó en este protocolo, los hidrogeles 3D son capaces de mantener el fenotipo de los condrocitos en la cultura, evitando el proceso de desdiferenciación celular en células fibrocartílago usualmente encontrados con cultivos monocapa 15. Por otra parte, cultivos a largo plazo de la construcción de hidrogel chondrocytes- revelaron un entorno favorable que mantiene las características intrínsecas de células asociadas con la edad y la enfermedad.
El uso de un hidrogel biomimético 3D tiene varias ventajas. En primer lugar, la inclusión de sulfato de condroitina (CS), un componente principal encontrado en el cartílago articular, permiten a las células para degradar la matriz de hidrogel mediante la secreción de condroitinasa y fijar en el cartílago recién sintetizado extra-celular de matriz 5, 16. Además, CS ha demostrado que tienen propiedades anti-inflamatorias en la articulación artrítica. El hidrogel biomimético también puede ser utilizado como un material de andamiaje para la entrega celular en la reparación del cartílago, y puede ser modificado químicamentepara facilitar una mejor integración 17,18 biomaterial-tejido.
El uso de los hidrogeles PEG-CS permite cultivos a largo plazo de los condrocitos y la evaluación de las propiedades bioquímicas y mecánicas. Aquí mostramos cómo esta plataforma puede ser útil para los análisis comparativos de diversas fuentes de condrocitos diferenciados con el fin de definir el tipo de célula óptima para la ingeniería de cartílago. Curiosamente, los condrocitos encapsulados en hidrogeles permanecen viables y proliferan según sus capacidades intrínsecas. Los soportes composición de hidrogel, de hecho, el crecimiento de juveniles y adultos condrocitos sanos como se muestra es la Figura 2. La composición y estructura de los hidrogeles descritos también promueve la formación de tejido de cartílago como se indica por la deposición de una matriz extracelular funcional evaluado por glicosaminoglicanos (GAG ) cuantificación.
Una ventaja adicional es que las construcciones de condrocitos hidrogelse puede evaluar para las propiedades mecánicas del tejido de cartílago recién formado. Tenga en cuenta que la prueba de compresión no confinada se debe realizar en el hidrogel acelular para la comparación. Los hidrogeles, de hecho, tienen una rigidez intrínseca debido a la rigidez de los restos de CS. Esfuerzo de compresión no confinada de 5-20% (a una velocidad de deformación 1% / s) se puede aplicar para el ensayo mecánico del tejido cartilaginoso 11,12 ya que el esfuerzo fisiológico experimentado por tejido de cartílago bajo condición de carga se ha informado a 10-20 13,14%. La respuesta de ambas células cargadas y acelular hidrogeles a ensayos mecánicos se evaluó en el punto final de la cultura. En el ejemplo descrito anteriormente se observó una rigidez comparable de las construcciones que contienen adultos y juveniles condrocitos en contraste con la menor rigidez de las construcciones que contienen condrocitos OA. Tales propiedades mecánicas de la construcción de células-hidrogel permiten la evaluación de las propiedades funcionales de latejido formado dando un análisis en profundidad de la capacidad de maduración de las células.
En conclusión, el uso de los hidrogeles biomiméticos 3D para estudiar el potencial de los diferentes población de condrocitos para generar tejido cartilaginoso puede ser ampliamente aplicada. Además de los estudios in vitro descritos aquí, el trasplante in vivo de los constructos de células cargado se puede prever para estudiar la maduración celular y el potencial regenerativo en el contexto fisiológico. Otras modificaciones de la plataforma de hidrogel con factores biomiméticos adicionales también se pueden prever para optimizar la proliferación de condrocitos y la maduración.
The authors have nothing to disclose.
The authors would like to acknowledge Stanford Department of Orthopaedic Surgery and Stanford Coulter Translational Seed Grant for funding. J.H.L. would like to thank National Science Foundation Graduate Fellowship and DARE Doctoral Fellowship for support.
juvenile chondrocytes (Clonetics™ Normal Human Chondrocyte Cell System ) | Lonza | CC-2550 | |
adult chondrocytes (Clonetics™ Normal Human Chondrocyte Cell System) | Lonza | CC-2550 | |
poly(ethylene glycol diacrylate) | Laysan Bio | ACRL-PEG-ACRL-1000-1g | |
2-morpholinoethanesulfonic acid | Sigma | M5287 | |
photoinitiator | Irgacure | 2959 | |
sodium chloride | Sigma | S9888 | |
chondroitin sulfate sodium salt | Sigma | C9819 | |
N-hydroxysuccinimide | Sigma | 130672 | |
1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride | Sigma | E1769 | |
2-aminoethyl methacrylate | Sigma | 516155 | |
dialysis tubing | Spectrum Laboratories | 132700 | |
Collagenase 2 | Worthington Biochemical | LS004177 | |
Collagenase 4 | Worthington Biochemical | LS004189 | |
DMEM/F12 media | HyClone, Thermo Scientific | SH3002301 | |
live/dead assay | Life Technologies | L3224 | |
Tri reagent | Life Technologies | AM9738 | |
Quant-iT™ PicoGreen® dsDNA Assay Kit | Invitrogen | P11496 | |
Sodium phosphate dibasic | Sigma | S3264 | |
Ethylenediaminetetraacetic acid disodium salt | Sigma | E5134 | |
L-Cysteine | Sigma | C1276 | |
1,9-dimethylmethylene blue | Sigma | 341088 | |
Instruments | |||
UV light equipment – XX-15LW Bench Lamp, 365nm | UVP | 95-0042-07 | |
Instron 5944 testing system | Instron Corporation | E5940 |