We present a protocol to assess changes in neuromuscular function. Percutaneous electrical nerve stimulation is a non-invasive method that evokes muscular responses. Electrophysiological and mechanical properties of these responses permit the evaluation of neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels).
Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise.
Perkutane elektrische Nervenstimulation wird weithin verwendet, um die neuromuskuläre Funktion 1 zu bewerten. Das Grundprinzip besteht aus Induktion einer elektrischen Stimulus zu einer peripheren motorischen Nerven, um eine Muskelkontraktion hervorzurufen. Mechanische (Drehmomentmessung) und elektrophysiologische (elektromyographische Aktivität) Reaktionen werden gleichzeitig aufgezeichnet. Drehmoment an der betrachteten gemeinsame aufgezeichnet ist, wird unter Verwendung eines Ergometers bewertet. Elektromyographischen (EMG) Signal aufgezeichnet unter Verwendung von Oberflächenelektroden wurde gezeigt, dass die Aktivität des Muskels 2 stellen. Diese nicht-invasive Methode ist nicht schmerzhaft und leichter als intramuskuläre Aufnahmen realisiert. Sowohl monopolare als auch bipolare Elektroden verwendet werden. Die monopolaren Elektrodenkonfiguration wurde gezeigt empfindlicher auf Änderungen der Muskeltätigkeit 3, die kleine Muskeln nützlich sein kann ist. Jedoch haben bipolare Elektroden gezeigt wirksamer bei der Verbesserung des Signal-Rausch-r zu seintio 4 und werden am häufigsten als ein Verfahren zum Aufzeichnen und zur Quantifizierung Motoreinheit Aktivität verwendet. Die nachfolgend beschriebene Methodik wird auf bipolare Aufnahmen konzentrieren. EMG-Aktivität ein Indikator für die Wirksamkeit und die Integrität des neuromuskulären Systems. Die Verwendung von perkutanen Nervenstimulation bietet weitere Einblicke in die neuromuskuläre Funktion, dh Änderungen an Muskel-, Wirbelsäulen oder supra spinaler Ebene (Abbildung 1).
Abb. 1: Übersicht über die neuromuskuläre Messungen STIM: Nervenstimulation. EMG: Elektromyographie. VAL: Freiwillige Aktivierungsniveau. RMS: Root Mean Square. M max: Maximal M-Wellen-Amplitude.
Im Ruhezustand wird die Verbindung Muskelaktionspotential, auch als M-Welle, ist die kurze Latenzzeiten Reaktion nach Reizartefakt beobachtet und stellt erregbaren Muskelmasse durch die direkte activ ation von Motoraxonen die zur Muskel (Abbildung 2, Nummer 3). M-Wellenamplitude steigt mit der Intensität bis zum Erreichen einer Hochebene von seinem Maximalwert. Diese Antwort, die so genannte M max, stellt die Synchron Summierung aller unter den Oberflächen-EMG-Elektroden 5 aufgezeichneten Motoreinheiten und / oder Muskelfaser Aktionspotentiale. Die Entwicklung der Spitze-zu-Spitze-Amplitude oder Wellenbereich verwendet wird, um Änderungen der neuromuskulären Transmission 6 identifizieren. Veränderungen der mechanischen Reaktionen mit dem M-Welle, dh Spitzen Zucken Drehmoment / Kraft, verbunden sind, können aufgrund von Veränderungen im Muskel Erregbarkeit und / oder innerhalb der Muskelfasern 7 sein. Die Assoziation von M max Amplitude und Spitzen Zucken Drehmomentamplitude (Pt / M-Verhältnis) liefert einen Index von elektromechanischen Wirkungsgrad des Muskel 8, dh mechanische Reaktion für eine gegebene elektrische Motorbefehl.
52974 / 52974fig2.jpg "/>
Abb. 2: Motor und reflexive Pfade durch Nervenstimulation aktiviert elektrische Stimulation eines gemischten (Motor / sensorische) Nerven (STIM) induziert eine Depolarisation der beiden Motor Axon und Ia afferenten Brand. Depolarisation Ia Afferenzen Richtung des Rückenmarks aktiviert ein alpha Motoneuronen, die wiederum ruft eine H-Reflex-Reaktion (Bahn 1 + 2 + 3). In Abhängigkeit von der Reizstärke, Motor Axon Depolarisation evoziert eine direkte muskuläre Antwort: M-Welle (Weg 3). Bei maximaler M-Wellenintensität wird ein antidrome Strom auch generiert (3 ') und kollidiert mit Reflex volley (2). Diese Kollision teilweise oder vollständig bricht den H-Reflex auf.
Der H-Reflex ist eine elektrophysiologische Reaktion verwendet, um Veränderungen in der Ia-α Motoneuron Synapse 9 beurteilen. Dieser Parameter kann im Ruhezustand oder während der freiwilligen Kontraktionen bewertet werden. H-Reflex stellt eine Variante des Dehnungsreflex (Abbildung 2, number 1-3). Der H-Reflex aktiviert Motoreinheiten monosynaptisch von Ia afferente Bahnen 10,11 rekrutiert, und kann eine periphere und zentrale Einflüsse 12 unterzogen werden. Das Verfahren erinnert an einen H-Reflex ist bekannt, dass eine hohe intraindividuelle Zuverlässigkeit Rücken Erregbarkeit in Ruhe 13,14 und während isometrische Kontraktionen 15 zu beurteilen haben.
Während einer willkürlichen Kontraktion, kann der Betrag der freiwilligen neuronalen Antrieb mit der Amplitude des EMG-Signals beurteilt werden, mit Hilfe der Root Mean Square Allgemeinen quantifiziert (RMS). RMS-EMG wird häufig verwendet, ein Mittel zur Quantifizierung der Erregung des Motorsystems während einer willkürlichen Kontraktion (Abbildung 1). Wegen der intra- und interindividuelle Variabilität 16 hat RMS EMG zur Verwendung der EMG während eines muskelspezifischen maximalen willkürlichen Kontraktion (RMS EMGmax) aufgezeichnet normalisiert werden. Darüber hinaus, weil Änderungen in EMG-Signal be aufgrund von Veränderungen am peripheren Ebene, die Normalisierung unter Verwendung eines peripheren Parameter, wie beispielsweise M-Welle erforderlich ist, um nur die zentrale Komponente des EMG-Signals zu beurteilen. Dies kann durch Dividieren der RMS-EMG durch die maximale Amplitude oder der Effektivwert Mmax der M-Welle durchgeführt werden. Normalisierung mit RMS Mmax (dh RMS EMG / RMS Mmax) ist die bevorzugte Methode, da sie berücksichtigt die mögliche Änderung der M-Wellendauer 17.
Motor Befehle können auch durch die Berechnung der freiwilligen Aktivierungsniveau (VAL) ausgewertet werden. Diese Methode verwendet das Zucken Interpolationstechnik 18 durch Überlagerung einer elektrischen Stimulation an M max Intensität während einer maximalen willkürlichen Kontraktion. Das zusätzliche Drehmoment durch die Stimulierung der Nerven hervorgerufen wird, um eine gleich Nervenstimulation in entspannter potenziert Muskel 19 erzeugte Kontrollzuckungsstärke verglichen. Um maximale VAL, das ursprüngliche Zucken interpo bewertenvon Merton 18 beschrieben lation Technik beinhaltet einen einzelnen Stimulus über einen willkürlichen Kontraktion interpoliert. Kürzlich wurde die Verwendung von paarweisen Stimulation immer beliebter geworden, da die hervorgerufenen Drehmoment Inkrementen größer sind, leichter erkannt und weniger variabel gegenüber dem Einzelstimulationsantworten 20. VAL liefert einen Index der Leistungsfähigkeit des Zentralnervensystems bis maximal aktivieren die arbeitenden Muskeln 21. Derzeit VAL ausgewertet mit dem Zucken Interpolationstechnik ist das wertvollste Methode zur Beurteilung der Höhe der Muskelaktivierung 22. Darüber hinaus ist das maximale Drehmoment beurteilt Verwendung eines Ergometers die richtig studiert Festigkeitsprüfung Parameter erhoben der Einsatz in Forschung und klinischen Einrichtungen 23.
Elektrische Nervenstimulation kann in einer Vielzahl von Muskelgruppen (zB Ellbogenbeuger, Handgelenk Flexoren, Kniestrecker, Plantarflexoren) verwendet werden. Allerdings macht Nerven Zugänglichkeit derTechnik schwierig in einigen Muskelgruppen. Die Plantarflexoren, insbesondere Triceps surae (soleus und gastrocnemii) Muskeln, werden häufig in der Literatur 24 untersucht. In der Tat sind diese Muskeln in der Fortbewegung beteiligt sind, rechtfertigt ihre besonderen Interesse. Der Abstand zwischen den Stimulationsstelle und Aufzeichnungselektroden erlaubt die Identifizierung der verschiedenen hervorgerufenen Wellen des Triceps surae Muskeln. Die oberflächliche Teil des N. tibialis posterior in der Kniekehle und die große Anzahl von Spindeln erleichtern die Reflexreaktionen im Vergleich zu anderen Muskeln 24 aufzuzeichnen. Aus diesen Gründen konzentriert sich die aktuell präsentierten Reflex Methodik auf der Triceps surae Gruppe von Muskeln (soleus und gastrocnemius). Das Ziel des Protokolls ist es daher, perkutan Nervenstimulationstechnik zu beschreiben, die neuromuskuläre Funktion im Trizeps Surae untersuchen.
Perkutane Nervenstimulation ermöglicht die Quantifizierung der zahlreiche Merkmale des neuromuskulären Systems nicht nur die grundlegende Steuerung der neuromotorischen Funktion bei gesunden Menschen zu verstehen, aber auch um akute oder chronische Anpassungen durch Materialermüdung oder Ausbildung 17 zu analysieren. Dies ist sehr vorteilhaft insbesondere für ermüdend Protokolle, wo Messungen sind nach der Übung, so schnell wie möglich durchgeführt werden, um die Auswirkungen der raschen Wiedergewinnu…
The authors have nothing to disclose.
The authors have no acknowledgements.
Biodex dynamometer | Biodex Medical System Inc., New York, USA | www.biodex.com | |
MP150 Data Acquisition System | Biopac Systems Inc., Goleta, USA | ||
Acknowledge 4.1.0 software | Biopac Systems Inc., Goleta, USA | www.biopac.com | |
DS7A constant current high voltage stimulator | Digitimer, Hertfordshire, UK | www.digitimer.com | |
Silver chloride surface electrodes | Control Graphique Medical, Brie-Comte-Robert, France | ||
Computer | |||
1 Cable for connecting the Biodex to the MP150 | |||
1 Cable for connecting the Digitimer to the MP150 | |||
1 Cable for connecting the MP150 to the computer |