We present a simple and unbiased olfactory test in mice. With this protocol olfactory discrimination, preference, avoidance and sensitivity to a novel odor as compared to water can be assessed in single behavioral sessions. This method is indicated for a single experimenter and analysis is based on computer-assisted video processing.
Olfaction is highly conserved among species and is required for reproduction and survival.
In humans, olfaction is also one of the senses that is affected with aging and is a strong predictor of neurodegenerative diseases. Thus, olfaction testing is used as a non-invasive diagnostic method to detect neurological deficits early on. In order to understand the mechanisms underlying olfactory network susceptibility, olfactory research in rodents has gained momentum in the past decade.
Here, we present a very simple, time efficient and reproducible olfactory testing method of innate odor perception and sensitivity in mice without the need of any prior food or water restriction. The tests are performed in a familiar environment to the mice, require only the scents and a 2 min session of odorant exposure. The analysis is performed, post-hoc, using computer-assisted commands on ImageJ and can be, therefore, carried out from start to end by one researcher.
This protocol does not require any special hardware or setup and is indicated for any laboratory interested in testing olfactory perception and sensitivity.
Olfaction is one of the most developed and important sensory functions in mammals. Any impairment in olfactory activity may affect food intake, social behavior and, in the worst case scenario, even survival. In humans, olfactory deterioration is age dependent1 and is considered a strong predictor of neurological disorders2–6. The olfactory identification test developed by the University of Pennsylvania currently represents one of the most used, non-invasive and quantifiable, diagnostic tests which can assess early neurological deficits7 and predict with high probability the progression of dementia8,9.
The accessibility of the olfactory system and the prominence of olfaction in rodents, has sparked an intense line of research addressing the mechanisms underlying olfactory functions10. We have previously shown that loss of function of the signaling receptor Notch1 affects olfactory avoidance11. In this protocol we use mice lacking the signaling ligand, Jagged1, in neurons or glia to study olfactory performance.
Innate olfaction is defined by three parameters as perception, discrimination between odors and olfactory sensitivity4. Olfactory testing in rodents can be done in a variety of ways and some behavioral studies make use of olfactometers, which provide the odor to the animal at a specific vapor concentrations and in a precise time frame12–14. Nevertheless, this instrumentation is expensive and may be available only in specialized facilities. In our work, we provide a simple, fast and reproducible olfactory testing protocol, which is carried out using volatile scents. The tests described measure perception to an attractant or a repellent odor and evaluate the discrimination between the scent and water11,15,16. Using the same setup, we also can measure the sensitivity to an odor at different concentrations16,17. The post-hoc computer-assisted video processing, inspired by the work of Page and colleagues18, provides unbiased results without the need of experimental blinding and allowing for a single person to carry out the whole experiment.
This protocol is intended to provide a starting point for studying olfactory behavior in mice.
All the animal procedures are in accordance with the EU Directive 2010/63/EU on the protection of animals used for scientific purposes and are approved by the local Animal Care Committee (Canton of Fribourg, Switzerland).
1. Animal Preparation
2. Experimental Setup
3. Olfactory Testing
Note: In this protocol odors have been deliberately chosen which are perceived as strong attractants (peanut butter and female urine) or strong repellent (2-MB acid)15. It is important to carry out the preference and sensitivity tests to pleasant odors prior to the avoidance test to eliminate the possibility of any interference with the olfactory behavior. Nevertheless, for the sake of simplicity, in this paper, preference and avoidance test will be both described under the perception test. Each behavioral session starts with a habituation phase.
4. Post-hoc Data Analysis
Note: All behavioral tests described are processed post hoc following the data analysis instructions.
5. Statistical Analysis
The perception test measures the attraction to peanut butter and avoidance to 2-MB acid. Three groups of mice are tested and the time spent in the “odor perimeter” are quantified as compared to water. In the preference test, the control group A displays significant preference to the odor as compared to water (t8 = 2.52, p <0.05). On the other hand, group B does not show any significant attraction to peanut butter and spends more time with water (t6 = 3.22, p <0.05). Thus, it behaves differently from control group A (F1,7 = 26.39, p <0.005). In addition, group C shows no discrimination and spends about the same time with water and peanut butter (t8 = 0.78, p = 0.45). On the whole, the three groups behave differently (F2,9 = 19.83, p <0.005) and there is a significant interaction between the genotype and treatment (peanut butter and water) (F2,1 = 4.90, p <0.005) (Figure 3A).
In response to 2-MB acid the control group displays an avoidance reflex and as a result spends more time with water (t8 = 2.67, p <0.05). Similarly, group B shows a pronounced avoidance reflex to 2-MB acid (t6 = 3.71, p <0.01). On the other hand, group C does not discriminate between the two odors and spends comparable times with 2-MB acid and water (t8 = 2.2, p = 0.6) (Figure 3B). On the whole, comparing the avoidance response the three groups do not display a significant different behavior (F2, 9 = 0.76, p = 0.49) as a result there is no interaction between treatment and genotype (F1, 2 = 0.52, p = 0.63).
In the olfactory sensitivity test to female urine, the curve displays the preference to urine at different concentrations versus water (Preference index= time spent with urine subtracted by the time spent with water). In this test, we observe that control group A has an attraction threshold to urine at a dilution of 1:1,000 and displays increasing attraction to urine with rising concentrations. Group B and C display a 100-fold higher threshold to attraction (1:10) as compared to group A (F2,9 = 4.78, p <0.05). Group B and C display comparable sensitivity curves (F1,19 = 0.36, p = 0.55). Comparing the sensitivity among groups, it appears that group A has higher sensitivity to female urine as compared to group B and C (F2,19 = 7.12, p <0.01) (Figure 4).
Figure 1: Representation of the setup used to perform the olfactory tests. (A) Camera above the cage. (B) Mice are placed in a cage for a 5 minutes habituation period. (C) The odorants are pipetted on the wall of the cage. (D) The exploratory activity of an odorant versus water is tested in a 2 min window.
Figure 2: Workflow of computer-assisted video processing using macros commands in ImageJ. The example refers to a mouse from group A exposed to urine at a 1:10 dilution. Please click here to view a larger version of this figure.
Figure 3: Representative results of olfactory preference and avoidance tests. The mice of the three groups (n = 5 for group A, n = 4 for group B and n = 5 for group C) have been exposed to (A) peanut butter and (B) 2-MB acid for a 2 min exploration session. The total time exploring the odor (black circles) versus water (grey circles) is represented. Significant differences in olfactory behavior among groups are indicated by black horizontal bars and asterisks. Significant differences in sniffing times between the odor and water within groups are shown by grey horizontal bars and asterisks. *P <0.05, **P <0.01, ***P <0.01 (grey horizontal bars, Student’s t-test; black horizontal bar, one-way ANOVA). Error bars are standard errors of the mean (SEM).
Figure 4: Representative results of sensitivity tests to increasing concentrations of female urine. The preference index curve, given by the exploration time with urine at different concentrations subtracted by the time spent with water, shows that group A (n = 5) has the highest sensitivity to urine as compared to group B (n = 4) and C (n = 5). *P <0.05 (black horizontal bars, one-way ANOVA). Error bars are SEM.
The tests proposed in this protocol allow to evaluate different aspects of innate olfactory behavior in mice: perception to odors, discrimination between odors versus water and sensitivity to odors. This protocol can be applied to any odor according to the preference and avoidance scale previously shown15. Since the protocol is based on exploratory activity it is important that mice do not display any motor impairment or anxiety which may affect their movement and interfere with olfactory exploration. The tests described are intended for adult male mice however they can be adapted to investigate olfaction also in adult females or aged mice.
Before commencing such a study investigating olfaction in mice it is important to pay attention to the following aspects: 1) perform each test at an interval of at least 3 days. Avoidance should be tested as last to minimize interference of olfactory memory20; 2) perform the experiments at the same time of the day, preferably in the late afternoon, when the mice are in their active cycle21 and use a dimmed source of light. In addition, scheduling the olfactory testing at defined times controls for possible circadian changes in olfactory functions22; 3) before starting the avoidance test, which uses repellent odorants, such as acids, bring one cage at the time in the experimental suite and keep the cage under a laminar hood. This step is important to avoid habituation to the odorant and obtain a more homogeneous response in the same group; 4) temporarily separate the mice which have been tested until all mice of the same cage are exposed to the odorant, to minimize odorant contamination; 5) use animals of the same strain, since different strains can behave in a heterogeneous manner when exposed to an odorant23; 6) the experimenter should wear a lab coat at all times and change gloves between animals to prevent odor mixing; 7) after pipetting the operator should move slowly away from the cage at a distance of 1.3 meters to prevent any confounding stimulation to the mice during the olfactory exploration; 8) mice displaying mean grey values only in one chamber should be excluded from the study, since mice are expected to explore both chambers to different degrees.
The method described offers several advantages over other protocols: it is extremely simple to set up, uses inexpensive materials, it is of fast completion and takes advantage of open source software, such as ImageJ. In addition, we provide macros that are ready to be installed and which can be custom-used and adapted to any arena and more than 2 odor perimeters. It has to be noted that only the time spent in the assigned odor perimeter is a measure of olfactory activity. Whereas the time spent in each chamber gives a readout of the exploratory activity of the mouse and is only a rough estimation of the olfactory behavior. As with other methods, statistical power can be gained by increasing the number of animals per group.
As compared to the olfactory testing using olfactometers, which can control automatically for vapor pressure and delivery time12–14, the proposed protocol is less controlled. Nevertheless, all the odors are applied in equal volumes, at defined distance and for the same time window. Thus, keeping these variables constant, in this testing an olfactometer is not required. There is another potential limitation to this protocol consisting in the time required for the adjustment and cutting of each video to obtain a fixed number of frames. Nevertheless, the same computer-assisted analysis can be used also on more sophisticated setups with odor ports delivering the odor at specific times. In this case, the video cutting could be automatically set.
As compared to other protocols using cotton pads impregnated with odor to test attraction and avoidance, the present protocol provides an additional information about the olfactory discrimination between a novel odor and a neutral odor (water)15,16 in one single experimental session. Moreover, the protocol does not require experimental blinding and can be entirely conducted by a single experimenter using the unbiased computer-assisted analysis.
These simple tests can be used to monitor the progression of neural deficits in Alzheimer’s or Parkinson’s disease mouse models and to investigate mechanisms of olfactory transmission.
The authors have nothing to disclose.
This work is funded by the Swiss National Foundation (31_138429) and Synapsis Foundation for the support of research on Alzheimer’s disease.
Mouse cage | Italplast (Italy) | 1144B | 36 cm length x 20.5 cm width x 13.5 cm height |
Chipped wood bedding | Abedd (Austria) | LTE E-001 | 3 cm high |
Peanut butter | Migros (Swizterland) | NA | 1:10 |
2-Methylbutyric | Sigma Aldrich (Switzerland) | W269514 | Pure |
Female Urine from fertile females of same mouse strain | NA | NA | Dilution series |
Camera | Olympus (US) | Camedia C-8080 | MOV files |
Quicktime for Java (Windows) | Apple (USA) | NA | video plugin for visualizing MOV files |
Image J for Windows | NIH (USA) | NA | Video Processing/Analysis |