Summary

重金属和微藻的产其他无机污染物的量化

Published: July 10, 2015
doi:

Summary

Integration of microalgal cultivation with industrial flue gas will ultimately introduce heavy metals and other inorganic compounds into the growth media. This study presents a procedure used to determine the end fate and impact of heavy metals and inorganic contaminants on the growth of Nannochloropsis salina grown in photobioreactors.

Abstract

增加了对可再生燃料的需求有研究者研究的替代原料如微藻的可行性。固有的优点包括高产量的潜力,利用非耕地和集成废物流。大规模微藻生产系统的营养需求将需要栽培系统具有工业废物资源,如二氧化碳从烟道气和从废水中养分的耦合。存在于这些废物无机污染物有可能导致生物蓄积在微藻生物生产力和限制终端使用产生负面影响。本研究着重于影响的实验评估和14无机污染物(砷,镉,钴,铬,铜,汞,锰,镍,铅,锑,硒,锡,钒和锌)的微绿球藻生长的命运。微藻分别在生长米栽培在光生物反应器照射在984微摩尔米-2-1,并保持在pH7EDIA污染与无机污染物的水平预期基础上,商品煤烟气系统中的组成。存在于生物质并在7天的生长周期结束的介质污染物通过冷原子吸收光谱法解析量化汞,并通过电感耦合等离子体质谱法对砷,镉,钴,铬,铜,锰,镍,铅,锑,硒,锡,钒和锌。结果显示N.藻是一个敏感的应变与生物量的统计减少yieldwith引入这些污染物的多金属环境。这里介绍的技术是足够用于量化藻类生长和确定无机污染物的命运。

Introduction

相比传统的陆地作物微藻已经示出实现由于固有较高的太阳能转换效率1,2-更高的生物量和脂质的产量。培养微藻以高的生产率,需要各种营养素,包括外部碳源的供应。据预计,大规模增长设施将与工业废物流如工业烟道气被集成,以尽量减少生产成本,并在同一时间提供环境整治。工业废弃物的碳通常以气态二氧化碳的形式,并且可以包含有潜力微藻生产产生不利影响的污染物。具体地,从煤衍生的烟道气会产生多种污染物,包括但不限于燃烧产物水和二氧化碳,以及硫和氮,细尘,有机污染物如二恶英和呋喃的氧化物和无机CON组taminants如重金属。大部分这些污染物包括无机物其中一些被称为上微藻生产率重金属的影响还没有被探讨。一些这些元素可以是营养物的适当浓度,但是在较高浓度下它们能产生细胞功能障碍,甚至死亡3。

微藻工业烟道气的集成有直接引入无机污染物进入生长介质的潜力。基于煤烟气具有多种无机元素( 砷,镉,钴,铬,铜,汞,锰,镍,铅,锑,硒,锡,V和Zn)在不同浓度的其中一些,在低浓度,代表营养微藻生长。无机污染物有一个高亲和力结合微藻,并进一步通过养分转运内部吸附。有些无机污染物( 钴,铜,锌和锰)是构成酶的组成部分营养素涉及d。在光合作用,呼吸作用等功能3,4。但是,在过量金属和准金属可能是有毒的。其它元素,如铅,镉,锡,锑,硒,砷,汞,不知道以支持细胞功能的任何浓度和代表非营养金属可能培养生长3,5,6负面影响。任何这些污染物的存在具有产生对微藻细胞功能的负面影响的可能性。此外,多种金属与微藻的相互作用复杂增长动力,并有可能影响增长潜力。

大规模的经济已直接关系到培养体系7-19的生产力。此外,因为它代表了99.9和99.4%质量的,分别为20在为任一开放轨道池塘(ORP),或光生物反应器的微藻生长系统(PBR)介质再循环是至关重要的。无机污染物在媒体的存在可能最终限制了米icroalgae生产力和媒体因污染物积聚的回收利用。本研究实验确定的14无机污染物的影响(如,镉,钴,铬,铜,汞,锰,镍,铅,锑,硒,锡,钒和锌)中,在从微藻培养系统的集成预期浓度与煤衍生的烟道气,在N的生产率生长在空运PBRS。在这项研究中所用的污染物已被证明不仅存在于煤基烟气但市政废物基烟道气,生物固体基烟道气,城市废水,产生的水,受损的地下水和海水21-23。在这项研究中使用的浓度是基于所预期如果微藻生长系统进行集成了煤基CO 2源与吸收效率在商业PBR系统20证实。详细的计算支持重金属和无机污染物的浓度在Napan呈现等人 24的分析技术被用来理解多数在生物量,媒体和环境的金属的分布。介绍的方法使微藻的生产潜力的评估下,无机污染物的压力和他们的命运结束量化。

Protocol

1.成长系统 图1.微藻生长系统。(A)空气转子流量计,(B)CO 2转子流量计,(C)与电磁pH值控制器,(D)数据记录仪,(E)在线空气过滤器,(F)空气分配头, (G)荧光灯银行(H)pH</stron…

Representative Results

生物质产量生产的N.藻在本研究中使用的PBR系统增长为1克/升-1至8.5±0.19克/升-1(N = 12),用于控制反应器和4.0±0.3克/升-1(N = 12)的多金属污染的7天。实验横跨一式三份反应器和多批次产生可重复的数据。 图2A示出的平均培养密度与基于来自三个独立PBRS采样非常小的标准误差。为了确保这一结果并不是一个孤立的结果,三个批次的…

Discussion

盐水微藻N.藻可以成功地生长在设计的生长系统,可重复的结果和高生物量产量。空运混合允许以最小的沉降或生物结垢超过7天的生长周期的良好混合的悬浮培养。横跨荧光银行的最小光变性还被示为不产生在生长明显的差异。

该研究显示重金属浓度代表以煤烟气负面影响生物质生长的整合污染的介质。重复性的研究突出了多​​金属系统对生产力的影响。在这一过?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge funding from the National Science Foundation (award # 1335550), Utah Water Research Laboratory, Professor Joan McLean and Tessa Guy for their help during the metal/metalloids analysis. The authors also thank Laura Birkhold for her support with the data collection and Danna Olbright.

Materials

Chemicals
Sodium chloride Fisher Scientific S271-3
Calcium chloride dihydrate Fisher Scientific C79-500
Potassium chloride Fisher Scientific P217-500
Sodium meta silicate nonahydrate  Fisher Scientific S408-500
Magnesium sulfate heptahydrate  Fisher Scientific M63-500
Potassium nitrate EMD Chemical PX1520-5
Potassium phosphate monobasic  Fisher Scientific P285-500
Ammonium ferric citrate Fisher Scientific I72-500
Boric acid Fisher Scientific A73-500
Sodium molybdate, dihydrate EMD Chemical SX0650-2
Manganese chloride tetrahydrate Fisher Scientific M87-500
Zinc sulfate heptahydrate Fisher Scientific Z68-500
Cupric sulfate pentahydrate Fisher Scientific C489-500
Biotin  Acros Organics 230090010
Thiamine  Acros Organics 148990100
Vitamin B12  Acros Organics 405920010
Copper (II) chloride dihydrate  Sigma-Aldrich 221783-100G Irritant, Dangerous to the Environment
Lead (II) chloride  Sigma-Aldrich 268690-250G Toxic, Dangerous to the Environment
Sodium dichromate dihydrate  Sigma-Aldrich 398063-100G Oxidizing, Highly Toxic, Dangerous to the Environment
Cobalt (II) chloride hexahydrate  Sigma-Aldrich 255599-100G Toxic, Dangerous to the Environment
Nickel (II) chloride hexahydrate  Sigma-Aldrich 223387-500G Toxic, Dangerous to the Environment
Sodium (meta) arsenite  Sigma-Aldrich 71287 Toxic, Dangerous to the Environment
Cadmium chloride  Sigma-Aldrich 202908-10G Highly Toxic, Dangerous to the Environment
Mercury (II) chloride  Sigma-Aldrich 215465-100G Toxic, Dangerous to the Environment
Tin (II) chloride dihydrate Fisher Scientific T142-500 Corrosive. Suitable for Hg analysis. Very hazardous.
Manganese chloride tetrahydrate Fisher Scientific M87-500
Vanadium (V) oxide Acros Organics 206422500 Dangerous to the Environment
Carbon dioxide  Air Liquide I2301S-1 Compressed
Hydrogen peroxide H325-500 Fisher Scientific 30% in water
ICP-MS standard ICP-MS-6020 High Purity Standards
Mercury standard CGHG1-1 Inorganic Ventures 1000±6 µg/mL in 5% nitric acid
Argon Air Liquide Compressed
Helium Air Liquide Compressed, ultra high purity
Hydrogen Air Liquide Compressed, ultra high purity
Nitric acid Fisher Scientific A509-P212 67-70% nitric acid, trace metal grade. Caution: manipulate under fume hood.
Hydrochloric acid Fisher Scientific A508-P212 35% hydrochloric acid, trace metal grade. Caution: manipulate under fume hood.
Equipment
Scientific prevacuum sterilizer Steris 31626A SV-120
Centrifuge Thermo Fisher 46910 RC-6 Plus
Spectrophotometer Shimadzu 1867 UV-1800
pH controller Hanna BL981411 X4
Rotometer, X5 Dwyer RMA-151-SSV T31Y
Rotometer, X5 Dwyer RMA-26-SSV T35Y
Water bath circulator Fisher Scientific 13-873-45A
Compact chiller VWR 13270-120
Freeze dryer Labconco 7752020
Stir plate Fisher Scientific 11-100-49S
pH lab electrode Phidgets Inc 3550
Inductively coupled plasma mass spectrometer Agilent Technologies 7700 Series ICP-MS Attached to autosampler CETAC ASX-520
FIAS 100 Perkin Elmer Instruments B0506520
Atomic absorption spectrometer Perkin Elmer Instruments AAnalyst 800
Cell heater (quartz) Perkin Elmer Instruments B3120397
Microwave Milestone Programmable, maximum power 1200 W
Microwave rotor Milestone Rotor with 24 75 mL Teflon vessels for closed-vessel microwave assisted digestion.
Materials
0.2 micron syringe filter Whatman 6713-0425
0.2 micron syringe filter Whatman 6713-1650
0.45 micron syringe filter Thermo Fisher F2500-3
Polystyrene tubes Evergreen 222-2094-050 17×100 mm w/cap, 16 mL, polysteryne
Octogonal magnetic stir bars Fisher scientific 14-513-60 Magnets encased in PTFE fluoropolymer

Referencias

  1. Dismukes, G. C., Carrieri, D., Bennette, N., Ananyev, G. M., Posewitz, M. C. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol. 19 (3), 235-240 (2008).
  2. Moody, J. W., McGinty, C. M., Quinn, J. C. Global evaluation of biofuel potential from microalgae. Proceedings of the National Academy of Sciences. 111 (23), 8691-8696 (2014).
  3. Pinto, E., et al. Heavy metal-induced oxidative stress in algae. J Phycol. 39 (6), 1008-1018 (2003).
  4. Gupta, A., Lutsenko, S. Evolution of copper transporting ATPases in eukaryotic organisms. Curr Genomics. 13 (2), 124-133 (2012).
  5. Perales-Vela, H. V., Peña-Castro, J. M., Cañizares-Villanueva, R. O. Heavy metal detoxification in eukaryotic microalgae. Chemosphere. 64 (1), 1-10 (2006).
  6. Sandau, E., Sandau, P., Pulz, O. Heavy metal sorption by microalgae. Acta Biotechnol. 16 (4), 227-235 (1996).
  7. Amer, L., Adhikari, B., Pellegrino, J. Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresour Technol. 102 (20), 9350-9359 (2011).
  8. Benemann, J. R., Goebel, R. P., Weissman, J. C., Augenstein, D. C. Microalgae as a source of liquid fuels. Final Technical Report, US Department of Energy, Office of Research. , (1982).
  9. Benemann, J. R., Oswald, W. J. Report No. DOE/PC/93204–T5 Other: ON: DE97052880; TRN: TRN. Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. , (1996).
  10. Chisti, Y. Biodiesel from microalgae. Biotechnol Adv. 25 (3), 294-306 (2007).
  11. Davis, R., Aden, A., Pienkos, P. T. Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy. 88 (10), 3524-3531 (2011).
  12. Jones, S., et al. Process design and economics for the conversion of algal biomass to hydrocarbons: whole algae hydrothermal liquefaction and upgrading. U.S. Department of Energy Bioenergy Technologies Office. , (2014).
  13. Lundquist, T. J., Woertz, I. C., Quinn, N. W. T., Benemann, J. R. A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute. , (2010).
  14. Nagarajan, S., Chou, S. K., Cao, S., Wu, C., Zhou, Z. An updated comprehensive techno-economic analysis of algae biodiesel. Bioresour Technol. 145, 150-156 (2011).
  15. Pienkos, P. T., Darzins, A. The promise and challenges of microalgal-derived biofuels. Biofuels Bioproducts & Biorefining-Biofpr. 3, 431-440 (2009).
  16. Richardson, J. W., Johnson, M. D., Outlaw, J. L. Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Research. 1 (1), 93-100 (2012).
  17. Rogers, J. N., et al. A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Research. 4, 76-88 (1016).
  18. Sun, A., et al. Comparative cost analysis of algal oil production for biofuels. Energy. 36 (8), 5169-5179 (2011).
  19. Thilakaratne, R., Wright, M. M., Brown, R. C. A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels. Fuel. 128, 104-112 (2014).
  20. Quinn, J. C., et al. Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial applications. Bioresour Technol. 117, 164-171 (2012).
  21. Borkenstein, C., Knoblechner, J., Frühwirth, H., Schagerl, M. Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J Appl Phycol. 23 (1), 131-135 (2010).
  22. Douskova, I., et al. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol. 82 (1), 179-185 (2009).
  23. Israel, A., Gavrieli, J., Glazer, A., Friedlander, M. Utilization of flue gas from a power plant for tank cultivation of the red seaweed Gracilaria cornea. Aquaculture. 249 (1-4), 311-316 (2012).
  24. Napan, K., Teng, L., Quinn, J. C., Wood, B. . Impact of Heavy Metals from Flue Gas Integration with Microalgae Production. , (2015).
  25. Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E. 3. 1. 2. 5. B. Inductively coupled plasma/mass spectrometry (ICP/MS) method. Standard methods for the examination of water and wastewater. , (2005).
  26. Smith, M., Compton, J. S. . Matrix effects in the ICP-MS analysis of selenium in saline water samples. , (2004).
  27. Mehta, S. K., Gaur, J. P. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol. 25 (3), 113-152 (2005).
  28. Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E. 3. 1. 2. 0. B. Inductively coupled plasma (ICP) method. Standard methods for the examination of water and wastewater. , (2005).
check_url/es/52936?article_type=t

Play Video

Citar este artículo
Napan, K., Hess, D., McNeil, B., Quinn, J. C. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae. J. Vis. Exp. (101), e52936, doi:10.3791/52936 (2015).

View Video