Ex vivo ERG can be used to record electrical activity of retinal cells directly from isolated intact retinas of animals or humans. We demonstrate here how common in vivo ERG systems can be adapted for ex vivo ERG recordings in order to dissect the electrical activity of retinal cells.
An In vivo electroretinogram (ERG) signal is composed of several overlapping components originating from different retinal cell types, as well as noise from extra-retinal sources. Ex vivo ERG provides an efficient method to dissect the function of retinal cells directly from an intact isolated retina of animals or donor eyes. In addition, ex vivo ERG can be used to test the efficacy and safety of potential therapeutic agents on retina tissue from animals or humans. We show here how commercially available in vivo ERG systems can be used to conduct ex vivo ERG recordings from isolated mouse retinas. We combine the light stimulation, electronic and heating units of a standard in vivo system with custom-designed specimen holder, gravity-controlled perfusion system and electromagnetic noise shielding to record low-noise ex vivo ERG signals simultaneously from two retinas with the acquisition software included in commercial in vivo systems. Further, we demonstrate how to use this method in combination with pharmacological treatments that remove specific ERG components in order to dissect the function of certain retinal cell types.
Électrorétinogramme (ERG) est une technique bien établie qui peut être utilisé pour enregistrer l'activité électrique de la rétine provoquée par la lumière. Le signal est généré ERG principalement par les variations de tension provoquées par les courants radiaux (selon l'axe des photorécepteurs et les cellules bipolaires) circulant dans l'espace extracellulaire résistif de la rétine. Le premier signal ERG a été enregistrée en 1865 par Holmgren de la surface d'un œil de poisson 1. Einthoven et Jolly 1908 2 divisés la réponse ERG à l'apparition de la lumière en trois vagues différentes, appelé A, B, et C-ondes, qui sont maintenant connu pour refléter principalement l'activité des photorécepteurs, les cellules bipolaires ON, et l'épithélium pigmentaire cellules, respectivement 8.3. ERG peut être enregistrée dans les yeux des animaux anesthésiés ou humains (in vivo), de la préparation des yeux isolé 9, à travers la rétine isolée intacte (ex vivo) 3,10-15 ou à travers les couches de la rétine spécifiques avec des microélectrodes (localERG) 4,16. Parmi ceux-ci, in vivo ERG est actuellement la méthode la plus largement utilisée pour évaluer la fonction rétinienne. Il est une technique non invasive qui peut être utilisé à des fins diagnostiques ou pour suivre la progression de maladies de la rétine chez les animaux ou patients. Cependant, in vivo enregistrements ERG produisent un signal compliqué avec plusieurs composants qui se chevauchent, souvent contaminés par le bruit extraoculaire physiologique (par exemple, la respiration et l'activité cardiaque).
ERG local peut être utilisé pour enregistrer le signal à travers des couches spécifiques de la rétine, mais il est le plus invasive et présente le plus faible rapport signal-sur-bruit (SNR) par rapport aux autres configurations d'enregistrement ERG. ERG local est aussi techniquement exigeante et nécessite un équipement coûteux (par exemple, un microscope et micromanipulateurs). Transretinal ERG de la intacte, la rétine isolée (ex vivo ERG) offre un compromis entre les méthodes in vivo et ERG locales permettant stable et higenregistrements h SNR de rétines intactes d'animaux ou les humains 17. Récemment, cette méthode a été utilisée avec succès pour étudier la fonction des bâtonnets et des cônes photorécepteurs dans les rétines de mammifères, les primates et les droits de 18-20. En outre, en raison de l'absence de l'épithélium pigmentaire de la rétine ex vivo, la composante c-onde positive du signal ERG est retiré et un composant PIII lente négative importante est révélée dans les enregistrements ex vivo. La composante lente PIII a été démontré que provenir de l'activité des cellules gliales de Müller dans la rétine 21-23. Ainsi, ex vivo ERG procédé pourrait également être utilisé pour étudier les cellules de Müller dans la rétine intacte. Plusieurs études ont également montré que les ex vivo enregistrements ERG pourraient être utilisés pour mesurer la concentration d'agents pharmacologiques autour de la rétine 24 et de tester l'innocuité et l'efficacité des médicaments 25-27.
Multiple commercial dans des systèmes in vivo sont disponibles etutilisée dans de nombreux laboratoires qui ne disposent pas nécessairement vaste expérience en électrophysiologie. En revanche, ex vivo dispositifs ont pas été disponible jusqu'à récemment 17 et par conséquent que très peu de laboratoires sont en cours avantage de cette technique puissante. Il serait bénéfique de faire des enregistrements ex vivo ERG disponible pour plusieurs laboratoires afin de faire progresser nos connaissances sur la physiologie et la pathologie de la rétine, et de développer de nouvelles thérapies pour les maladies cécitantes. Nous démontrons ici un dispositif simple et abordable ex vivo ERG 17 et montrons comment il peut être utilisé en combinaison avec plusieurs systèmes vivo ERG disponibles dans le commerce pour enregistrer dans la signalisation de bâtonnet et le cône médiation (A et B-ondes) et la fonction de les cellules de Müller (ralentir PIII) de rétines de souris de type sauvage intacte.
Nous démontrons ici les étapes critiques pour l'obtention de haute qualité ex vivo enregistrements ERG simultanément à partir de deux rétines de souris isolées en utilisant des composants in vivo du système ERG avec un ex vivo ERG adaptateur. Dans cette étude, nous avons perfusé les deux rétines de l'animal avec la même solution (soit Ames ', Ringer Locke ou) mais il est également possible de perfuser chaque rétine avec une solution différente, par exemple,…
The authors have nothing to disclose.
Ce travail a été soutenu par le NIH subventions EY019312 et EY021126 (VJK), EY002687 au Département d'ophtalmologie et des sciences visuelles à l'Université de Washington, et par la recherche pour prévenir la cécité.
In vivo ERG system | OcuScience | HMsERG | www.ocuscience.us/id77.html |
In vivo ERG system | LKC Technologies | UTAS-E 3000 | www.lkc.com/products/UTAS/bigshot.html |
Ex vivo adapter | OcuScience | Ex VIVO ERG adapter | www.ocuscience.us/id107.html |
Dissection microscope | North Central Instruments | Leica M80 | May use any brand |
IR emitter | Opto Diode Corp. | OD-50L | www.optodiode.com |
Prowler Night Vision Scopes | B.E. Meyers Electro Optics | D4300-I | Military grade product. |
Red filter | Rosco Laboratories | Roscolux #27 Medium Red | May be used instead of IR system |
Red head light | OcuScience | ERGX011 | www.ocuscience.us/catalog/i29.html |
Microscissors | WPI, Inc. | 500086 | www.wpiinc.com/ |
Dumont tweezers #5 | WPI, Inc. | 14101 | |
Razor blades | Electron Microscopy Sciences | 72000 | www.emsdiasum.com |
Scale | Metler Toledo | AB54-S/FACT | May use any brand |
pH meter and electrode | Beckman Coulter | pHI 350 | May use any brand |
NaCl | Sigma-Aldrich | S7653 | May use any brand |
KCl | Sigma-Aldrich | 60129 | May use any brand |
MgCl2 | Sigma-Aldrich | 63020 | 1.0 M solution |
CaCl2 | Sigma-Aldrich | 21114 | 1.0 M solution |
EDTA | Sigma-Aldrich | 431788 | May use any brand |
HEPES | Sigma-Aldrich | H3375 | May use any brand |
Sodium Bicarbonate | Sigma-Aldrich | S6297 | May use any brand |
Ames medium | Sigma-Aldrich | A1420 | May use any brand |
BaCl2 | Sigma-Aldrich | B0750 | May use any brand |
DL-AP4 | Tocris Bioscience | 101 | May use any brand |
Succinic acid disodium salt | Sigma-Aldrich | 224731 | May use any brand |
L-Glutamic acid | Sigma-Aldrich | G2834 | May use any brand |
D-(+)-Glucose | Sigma-Aldrich | G7528 | May use any brand |
Leibovitz culture medium L-15 | Sigma-Aldrich | L4386 | May use any brand |
MEM vitamins | Sigma-Aldrich | M6895 | |
MEM amino acids | Sigma-Aldrich | M5550 | |
Carbogen | Airgas | UN3156 | 5% CO2 |