The fabrication process and experimental characterization techniques relevant to single-electron pumps based on silicon metal-oxide-semiconductor quantum dots are discussed.
As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization.
Silicon is the material of choice for most of the modern microelectronics. Its properties, combined with advanced lithographic techniques, have allowed the semiconductor industry to achieve very large-scale integration and deliver billions of transistors per chip. The metal-oxide-semiconductor (MOS) technology1 has been the key of this relentless technological progress2. In brief, it is based on a selectively doped Si substrate which is thermally oxidized to grow a high quality SiO2 gate oxide on which a metal gate electrode is deposited. Recently, it has been shown that the use of a stack of gate oxides could be beneficial3 . While present industry standards have reached minimum feature sizes for gate lengths below 20 nm, it is becoming increasingly evident that, at this level of miniaturization, detrimental quantum mechanical phenomena come into play that may complicate further downscaling4.
Remarkably, silicon is also an excellent host material to exploit the quantum properties of the electron charge and spin5. This has broadened its range of applicability to entirely new fields such as quantum computing6 and quantum electrical metrology7. Among other approaches5, the use of a multi-gate MOS technology8,9 has led to electrostatically-defined quantum dots (QD) whose occupancy can be controlled down to single-electron level10. Unlike the conventional MOS process where just one gate per transistor is needed1, these QDs are defined via a three-layer stack of Al/AlyOx gates which are used to selectively accumulate electrons at the Si/SiO2 interface, as well as provide lateral and vertical confinement11.
Although these devices had been originally developed for quantum computing applications, they have also recently shown promising performances as metrological tools12,13. In the field of quantum electrical metrology, a long-standing goal is the redefinition of the unit ampere in terms of the elementary charge (e) 14. In particular, the emphasis is on the realization of nano-scale charge pumps to clock the transfer of individual electrons timely and accurately. These devices generate macroscopic quantized electric currents, I=nef, where f is the frequency of an external driving oscillator and n is an integer. To date, the best performance has been achieved with a GaAs-based pump by yielding a current in excess of 150 pA with a relative uncertainty of 1.2 parts per million15. Recently, silicon MOS QDs have also stood out for the implementation of highly accurate single-electron pumps thanks to the capability of finely tuning the charge confinement13.
Here, we discuss the protocol used for the fabrication of silicon MOS QDs. Furthermore, the cryogenic set-up used to test the integrity of the devices after fabrication and the one to perform charge pumping experiments are described. Finally, representative measurements of quantized electric current are reported.
The protocol reported in this paper describes the techniques to fabricate silicon MOS QDs, as well as the experimental procedures to test their functional integrity and operate them as single-electron pumps. Remarkably, by tailoring the gate design, the same fabrication process can be employed to produce devices suitable for quantum bit readout and control17, as well as charge pumping12,13. We note that many of the process parameters quoted in this article may vary depending on the fabrication tools used (calibration, make or model), as well as on the type of silicon substrate (thickness and background doping density). Quantities such as lithography exposure dose or development time, etching or oxidation duration, have to be carefully calibrated and tested to ensure a reliable yield. Furthermore, it is crucial to avoid cross-contamination arising from the use of the same fabrication tools for different processes. To this end, a number of critical steps are carried out with equipment exclusively dedicated to silicon processing such as metal evaporators, oxygen furnaces and HF baths.
More generally, silicon is drawing a growing interest as the material of choice to realize charge pumps18-20. This is partly due to the attractive perspective of implementing a new quantum-based electric current standard using an industry-compatible silicon process. This would benefit from well-established and reliable integration techniques for scalability, parallelization and driving overhead. Importantly, a full complementary MOS (CMOS) technology, free of traditional metal as the gate material, has shown greatly reduced background charge fluctuations in single-electron devices21. Such fluctuations can be harmful in achieving metrological accuracies.
The protocol discussed here is limited to the realization of MOS nano-devices with metal gates. Therefore, to achieve full industrial compatibility and reduce charge fluctuations, it would be needed to modify the gate deposition techniques and use highly doped polycrystalline silicon as the gate material.
In conclusion, the MOS QD pumps discussed here have recently combined the technological advantage of silicon with very good performance in terms of accurate current generation13. This stems from the high flexibility of the design and fabrication process which allow one to stack multiple gate layers leading to a compact and versatile system. The resulting fine tunability of the electrostatic confinement of the dot together with the potential to reduce background charge fluctuations sets the stage to overcome the main challenges observed in other semiconductor pumps22,23 .
The authors have nothing to disclose.
We thank K. Y. Tan, P. See and G. C. Tettamanzi for useful discussions. We acknowledge financial support from the Australian Research Council (Grant No. DP120104710), the Academy of Finland (Grant No. 251748, 135794, 272806) and support from the Australian National Fabrication Facility for device fabrication. A.R. acknowledges financial support from the University of New South Wales Early Career Researcher Grant scheme. The provision of facilities and technical support by Aalto University at Micronova Nanofabrication Centre is also acknowledged.
Silicon wafers | TOPSIL | 4 inch | |
Electron-beam lithography machine | Raith gmbh | Raith 150two | |
E-beam resist | MicroChem gmbh | PMMA | |
Photoresist | MicroChem gmbh | nLOF2020 | |
Mask aligner | Quintel | Q6000 | |
Photoresist developer | MicroChem gmbh | AZ826MIF |