We describe a protocol for hybrid imaging, combining fluorescence-mediated tomography (FMT) with micro computed tomography (µCT). After fusion and reconstruction, we perform interactive organ segmentation to extract quantitative measurements of the fluorescence distribution.
Fluorescence-mediated tomography (FMT) enables longitudinal and quantitative determination of the fluorescence distribution in vivo and can be used to assess the biodistribution of novel probes and to assess disease progression using established molecular probes or reporter genes. The combination with an anatomical modality, e.g., micro computed tomography (µCT), is beneficial for image analysis and for fluorescence reconstruction. We describe a protocol for multimodal µCT-FMT imaging including the image processing steps necessary to extract quantitative measurements. After preparing the mice and performing the imaging, the multimodal data sets are registered. Subsequently, an improved fluorescence reconstruction is performed, which takes into account the shape of the mouse. For quantitative analysis, organ segmentations are generated based on the anatomical data using our interactive segmentation tool. Finally, the biodistribution curves are generated using a batch-processing feature. We show the applicability of the method by assessing the biodistribution of a well-known probe that binds to bones and joints.
Fluorescence-mediated tomography, also called fluorescence molecular tomography (FMT), is a promising technique to quantitatively assess the fluorescence distribution in diffuse tissues, such as anesthetized mice or even human body tissues, e.g., breasts or finger joints. In contrast to non-invasive microscopy techniques, which allow imaging of superficial targets at subcellular resolution1, FMT allows three-dimensional reconstruction of fluorescent sources in depths of several centimeters, albeit at lower resolution2. Many targeted fluorescent probes are available to image angiogenesis, apoptosis, inflammation, and others2–5. Some probes are activatable, e.g., by specific enzyme cleavage leading to unquenching of fluorochromes. Moreover, reporter genes expressing fluorescent proteins can be imaged, e.g., to track tumor cell migration6.
FMT strongly benefits from the combination with an anatomical modality, e.g., µCT2,7 or MRI8. While stand-alone FMT devices are commercially available9, the fluorescence images are difficult to interpret without anatomical reference information. Recently we were able to show, that the fused anatomical image data enables a more robust analysis10. The anatomical data can also be used to provide prior knowledge, such as the outer shape of the mouse, which is important for accurate optical modeling and fluorescence reconstruction11. Furthermore, optical scattering and absorption maps can be estimated using segmentation of tissue types and by assigning class specific coefficients12,13. For near-infrared light, hemoglobin is the main absorber in mice, besides melanin and fur14. Since the relative blood volume varies regionally by orders of magnitude, an absorption map is particularly important for quantitative fluorescence reconstruction13.
One advantage of using non-invasive imaging devices is that the mice can be imaged longitudinally, i.e., at multiple time points. This is important to assess the dynamic behavior of probes, i.e., their target accumulation, biodistribution and excretion10,15, or to assess the disease progression16. When imaging several mice at multiple time points, a large amount of image data sets arises. To enable comparability, these should be acquired in a systematic way, i.e., with a well-defined and documented protocol. The large number of scans poses a challenge for image analysis, which is required to extract quantitative measurements from the image data.
The purpose of our study is to provide a detailed description of a µCT-FMT imaging protocol which we used and optimized throughout several studies10,13,15,17,18. We describe how the data sets are generated, processed, visualized, and analyzed. This is demonstrated using an established molecular probe, OsteoSense, that binds to hydroxyapatite19, and can be used to image bone diseases and remodeling2. All procedures involving animals were approved by the governmental review committee on animal care.
The protocol contains a detailed description of the following steps: At first, phantoms or mice and the multimodal mouse bed are prepared for imaging. Then a whole-body scan is acquired in the µCT. Subsequently the mouse bed is transferred to the FMT where two scans are acquired (up and upside down). This can be repeated for multiple mice at multiple time points. After completion of the data acquisition, the data needs to be exported and sorted to enable automated segmentation (requiring a Definiens software license), as well as image fusion and fluorescence reconstruction (requiring an Imalytics Preclinical software license). Finally it is shown how the multimodal data sets are visualized and how organs are interactively segmented to quantify the biodistribution of fluorescent probes.
1. Phantom Preparation
NOTE: Phantoms are useful to test the imaging system, but also to determine the calibration factor for a new probe.
2. Mouse Preparation
NOTE: µCT-FMT imaging requires special preparation including anesthetization and hair removal.
3. Mouse Bed Preparation
NOTE: For µCT-FMT scanning, use a multimodal mouse bed, which fits both into the µCT and the FMT.
4. µCT Imaging
NOTE: A whole-body scan is performed using the µCT. The generated anatomical data is required for image fusion, for an improved fluorescence reconstruction and for image analysis.
5. FMT Imaging
NOTE: Directly after µCT scanning, the mouse is scanned in the FMT in two configurations (up and upside down) which are used together for an improved fluorescence reconstruction.
6. Image Fusion and Reconstruction
NOTE: After completion of the µCT-FMT scanning, e.g., at the end of the study, the acquired data needs to be sorted to enable the automated image fusion and fluorescence reconstruction.
7. Image Analysis
NOTE: To extract quantitative measurements from the image data, segmentation of lesions and organs is required.
8. Probe Calibration
We applied the described protocol to assess the biodistribution of a targeted probe, OsteoSense, which binds to hydroxyapatite. 3 mice (C57BL/6 Apoe-/- Ahsg-/- double knockout mice, 10 weeks old) were imaged before and 15 min, 2 h, 4 h, 6 h, and 24 h after i.v. injection of 2 nmol OsteoSense. Our software automatically detected the markers built into the multimodal mouse bed (Figure 1, Figure 2A,B), which enabled fusion of the anatomical µCT data with the fluorescence reconstruction performed by the FMT (Figure 2C,D). Since OsteoSense is a probe with a low molecular weight, a fast renal excretion and therefore high signal in the urinary bladder is expected. Fusion of the fluorescence reconstruction of the FMT revealed problems such as misplaced signal outside the bladder (Figure 2C,D). These problems occur because the FMT does not know the true shape of the mouse and assumes a block shape. Our reconstruction determines the accurate shape from the µCT data and generates scattering and absorption maps13 in order to enable a more accurate fluorescence reconstruction with better signal localization, which is particularly evident for the bladder (Figure 2E,F).
To assign the reconstructed fluorescence to appropriate regions, we interactively segmented several organs using our software (Figure 3). For each of the 18 scans, 7 regions were segmented based on the µCT data, i.e., heart, lung, liver, kidneys, spine, intestine and bladder. Subsequently, the software was used to compute the mean fluorescence concentration for each of the 126 regions. Fortunately, the software provides a batch mode, which computes all the values and saves them in a single spreadsheet.
To visualize the fluorescence distribution, 3D renderings were generated for each time point, using comparable windowing setting (Figure 4A-F). Using the quantified organ values, the biodistribution was computed by averaging the organ values over the three mice (Figure 4G). The pre scans, acquired before injection, showed negligible background signal. 15 min after injection, the strongest signal appeared in the urinary bladder, because of the fast renal excretion. At the subsequent time points, the remaining probe had accumulated at bones and joints.
Figure 1. Multimodal Mouse Bed. (A) The multimodal mouse bed contains two acrylic glass plates that tightly hold the mouse. The tightening is adjusted using two screws. The mouse bed contains markers (empty holes) for image fusion. Anesthetic gas is supplied using a flexible tube which is fixated with tape. (B) The mouse bed is attached to a metal holder and held in the center of the rotating µCT gantry. (C) Avoid a gap between mouse bed and the metal holder, because otherwise, the markers may be incorrectly assigned leading to incorrect fusion. The anesthetic gas tube should be attached to the tube connector. (D) The mouse bed should be inserted into the FMT with the front first to enable a correct automated fusion. (E) The markers are visible to the FMT camera, which is used for the automated marker detection and fusion. Please click here to view a larger version of this figure.
Figure 2. Image Fusion and Reconstruction. (A, B) Markers and the outer shape of the mouse are determined by the automated segmentation algorithm. (C, D) 15 min after injection of OsteoSense, a considerable amount of the probe has already been excreted into the urinary bladder. After fusing the vendor-provided reconstruction with the µCT data, problems become visible. Most of the signal appears around the bladder but not inside the bladder and some signal even appears in the air. This happens because the FMT assumes a block-shaped mouse. (E, F) Our improved fluorescence reconstruction, using the shape of the mouse derived from the µCT data, results in better localization of the fluorescence inside the bladder. Please click here to view a larger version of this figure.
Figure 3. Interactive Organ Segmentation. (A) To quantify the fluorescence distribution, several organs are segmented: heart (red), lung (pink), liver (brown), stomach (beige), spine (purple), kidneys (yellow), intestine (green), and urinary bladder (gold). (B) The lung, which is strongly contrasted compared with the surrounding tissue, is segmented using thresholding and region filling. (C) Round organs, such as the bladder, kidneys, and heart are segmented using “scribbles”. (D) Organs with a more complex shape, e.g., liver and stomach are segmented incrementally using scribbles. To segment the spine, a high threshold is applied to segment all bones. Then some bones, e.g., the ribs, are cut away, until the spine remains. Please click here to view a larger version of this figure.
Figure 4. Biodistribution. To assess the biodistribution, the mice are scanned at several time points (A-F). (A) The pre scan, before injection, shows little background signal in the 750 nm channel. (B) 15 min after injection, a considerable amount of the probe is already in the urinary bladder. (C) At the 2 h time point, the mouse had urinated, which results in some fluorescence outside the mouse. At later time points (D-F), the signal appears predominantly at the bones and joints, i.e., at the spine and the knees. (G) The quantified fluorescence concentration is shown for selected organs.
We describe and apply a protocol for multimodal µCT-FMT imaging. We use commercially available and widely used FMT and µCT devices3,11,15–17,21. While the protocol requires a specific FMT, the µCT can be replaced by another µCT with similar functionality and comparable scanning parameters, e. g., the field of view should be large enough to cover the mouse bed including the markers.
The FMT has been used for biodistribution analysis without combining it with µCT or MRI21, however, the anatomical data is beneficial to increase the reproducibility because the segmentation can be based on the organ boundaries which are visible in the µCT data10. While integrated µCT-FMT devices have been developed2,7, these are not commercially available yet. Furthermore, the use of two separate devices allows piping, i.e., the next mouse can be imaged in the µCT while the first mouse is still in the FMT, to increase the throughput.
To reduce the manual workload, we perform automated marker detection and fusion. Furthermore, the mouse shape is automatically segmented and this information significantly improves the fluorescence reconstruction11,13,22. For quantitative fluorescence reconstruction, absorption and scattering maps are needed13,23. We derive the scattering map by automated segmentation of the µCT data and assigning known scattering coefficients of several tissue types (lung, bone, skin, fat, and remaining soft tissue)24. Subsequently, we reconstruct an absorption map from the optical raw data which is particularly important for well-perfused organs such as the heart and the liver13,20.
Scanning several mice at multiple time points quickly results in a large number of data sets to be analyzed. For biodistribution studies, several organs need to be segmented for each µCT-FMT scan. Unfortunately, the segmentations cannot be reused, because the mouse is newly positioned into the mouse bed repeatedly. We use a tool for interactive segmentation, developed at our institute, however, other tools might also be appropriate25. We generate voxel-wise segmentations, because these match better to complex organs than simple shapes such as ellipses and cubes26. Automated whole-animal segmentation would be useful to further reduce the manual workload27, but an interactive segmentation tool would still be required to correct for segmentation errors. Furthermore, automated segmentation tools can hardly anticipate special cases such as pathologies correctly. Since we use native µCT scans, some organs such as the spleen are very difficult to segment even manually. Contrast agents would help, but there are problems with tolerability and it is difficult to maintain a steady contrast agent distribution throughout the longitudinal imaging.
Our phantom study shows that the signal localization is improved when using the shape information for fluorescence reconstruction. In vivo, a similar improvement is evident for the early time point (15 min after injection), when a large amount of the probe is already in the urinary bladder. The hydroxyapatite-binding probe accumulates at bones and joints. It is remarkable how fast this occurs, i.e., the signal is already clearly visible at the spine 15 min after injection. This probably is caused by the low molecular weight of the probe, which enables fast extravasation and diffusion to the target regions. The probe binds covalently to its target hydroxyapatite and the unbound probe is excreted. For the later time points, between 6 h and 24 h after injection, the signal intensity in the spine remains relatively stable, probably, because hardly any light reaches deep into the mouse to bleach the fluorescence. For our study, we used the 750 nm channel, which results in low background fluorescence as evident for the scans acquired before injection. At lower wavelengths, more background signal can be expected28.
In summary, we describe a multimodal imaging protocol for commercially available FMT and µCT devices. We show that the combination provides benefits for fluorescence reconstruction. We illustrate how the biodistribution curves are extracted from the large amount of image data by means of interactive organ segmentation and batch processing. We believe that this standardized workflow can be helpful for drug development and other imaging studies using fluorescently labeled probes.
The authors have nothing to disclose.
We thank Marek Weiler for performing the phantom experiments. This work was supported by the European Research Council (ERC Starting Grant 309495: NeoNaNo), the German Federal State of North Rhine Westphalia (NRW; High-Tech.NRW/EU-Ziel 2-Programm (EFRE); ForSaTum), the German Ministry for Education and Research (BMBF) (funding programs Virtual Liver (0315743), LungSys (0315415C), LungSys2(0316042F), Photonik Forschung Deutschland (13N13355)), the RWTH Aachen University (I3TM Seed Fund), and Philips Research (Aachen, Germany).
FMT (Fluorescence molecular tomography) FMT2500 LX | PerkinElmer | FMT2000 | Device for fluorescence molecular tomography |
µCT (micro computed tomography) Tomoscope Duo | CT Imaging GmbH | Tomoscope Duo | Device for micro computed tomography |
Multimodal Mouse Bed | CT Imaging GmbH | Experimental builder | Partially transparent animal holder |
IsoFlo (isoflurane, USP) | Abbott | 05260-05 | Isoflurane Inhalation anesthesia |
Small animal anesthesia system | Harvard apparatus | 726419 | Complete Isoflurane Table-Top System |
Chlorophyll-free mouse food | Ssniff | E15051 | low chlorophyll / low fluorescence food |
OsteoSense 750EX | PerkinElmer | NEV10053EX | Animal FMT contrast agent |
Portex Fine Bore Polythene Tubing | Smith medical | 800/100/120 | Tube for injection catheter |
Sterican 30g | BBraun | 4656300 | Hypodermic needle for catheter |
Imeron | Altana pharma | INLA F.1/0203/3.5337.69 | CT contrast agent for the phantom inclusions |
Agarose | Sigma | 90-12-36-6 | Agarose for phantom production |
TiO2 | Applichem | A1900,1000 | Titanium oxyde as phantom scattering agent |
Trypan blue | Fluka | 93595 | Trypan blue to adjust phantom light propagation |
Cy7 | Lumiprobe | 15020 | Fluorochrome for the phantom inclusions |
Lipovenoes 20% | Fresenius Kabi | 3094740 | Lipid emulsion, scattering agent for FMT contrast agents |
Definiens Developer XD Server | Definiens AG | Server XD | Software platform for automated segmentation |
Imalytics Preclinical | ExMI/Gremse-IT | Version 2.0.1 | Software for image fusion, reconstruction and analysis |
NVIDIA Geforce Titan | Asus | GTXTITAN6GD5 | High end computer graphics card, 6GB Memory |