The goal of this protocol is to outline a surgical approach to provide direct access to the dorsal cochlear nucleus in a murine model.
Enquête sur l'utilisation du transfert de gène à médiation virale pour arrêter ou inverser la perte auditive a largement été reléguée au système auditif périphérique. Peu d'études ont examiné le transfert de gènes au système auditif central. Le noyau cochléaire dorsal (DCN) du tronc cérébral, qui contient des neurones de second ordre de la voie auditive, est un site potentiel de transfert de gènes. Dans ce protocole, une technique pour une exposition directe et maximale de la DCN murin par une approche de la fosse postérieure est démontrée. Cette approche permet une chirurgie aiguë ou la survie. Suite à la visualisation directe de la DCN, une multitude d'expériences sont possibles, y compris l'injection de opsins dans le noyau cochléaire et une stimulation ultérieure par une fibre optique couplée à un laser à lumière bleue. D'autres expériences de neurophysiologie, telles que la stimulation électrique et tracés d'injection de neurones sont également possibles. Le niveau de visualisation et la durée de la stimulation font réalisables cette approche applicable à un large éventail d'expériences.
Virus-mediated gene transfer to reverse hearing loss has largely been focused on the peripheral auditory system.1 Targeting the cochlea, investigators have examined a host of delivery routes, including osmotic minipump infusion2, vector-transgene complex-soaked Gelfoam®2 or gelatin sponge3, direct microinjection4; numerous gene transfer vectors, including adeno-associated viral vectors5,6, lentiviral vectors7, and cationic liposomes2; and the dissemination of gene transfer vectors beyond the target tissue2. Most recently, adeno-associated virus (AAV)-1 has been introduced in the cochlea in order to treat deafness in mice due to loss of vesicular glutamate transporter-3.8 Further, the application of optogenetics in peripheral auditory system has recently been described.9
Few studies, however, have examined gene transfer to the central auditory system. The dorsal cochlear nucleus (DCN) of the brainstem contain second order neurons of the auditory pathway. While gene transfer techniques in the cochlear nucleus (CN) may be utilized for a host of investigations, gene transfer of opsins, light-sensitive proteins, to the DCN may also be utilized to enable optogenetics-based experimental techniques. Following virus-mediated gene transfer delivery of an opsin, such as channelrhodopsin-2 (ChR2), the neurons of the DCN becomes sensitive to light stimuli. Optogenetic gene transfer has been previously attempted in several brainstem regions, including the rat retrotrapezoid nucleus, mouse locus coeruleus, monkey superior colliculus, and mouse ventral tegmental area.10-14
Recently, investigators have examined the use of optogenetics in the DCN.15,16 The DCN is the location of placement of auditory brainstem implants in humans, making it an attractive part of the auditory system to study for translational studies on auditory neuroprostheses. However, given the location of the DCN, surgical exposure is challenging. The technique described herein provides a protocol for maximal exposure of the DCN via posterior fossa approach to enable viral vector gene transfer and optogenetics-based experiments in a murine model. Previous studies used stereotactic microinjection into the DCN with channelrhodopsin-2.16 Stereotaxic injections, however, are potentially less accurate than injections made by direct visualization, especially in a nucleus as small and deep along the brainstem as the DCN. Transgenic mice expressing tissue specific proteins in the CN are also an attractive option and would obviate the need for gene transfer. Our protocol for exposure of the DCN would also work in transgenic mice as the DCN would need to be directly exposed for optical stimulation. This technique for surgical exposure of the DCN is adapted from previous protocols involving recordings from the auditory nerve and cochlear nucleus in mice and rat models.15,17-20
The overall goal of the protocol is to provide direct exposure to the CN to allow for gene transfer techniques. More specifically, the approach is compatible with both acute and survival surgery and the preparation can be repeated in the same animal for subsequent neurophysiological testing. The direct exposure of the DCN protocol has implications for optogenetics- and virus-mediated gene transfer-based experimentation in other nuclei of the brainstem.
Cet article décrit la technique de visualisation directe de la DCN dans le modèle murin pour la manipulation du système auditif central. L'approche décrite de la visualisation directe offre des avantages significatifs par rapport à la principale alternative, qui sont des approches stéréotaxiques. Principalement, la visualisation directe de la DCN permet de confirmation immédiate du site du tronc cérébral, alors que les approches stéréotaxiques ne offrent pas la visualisation directe. Dans les expérience…
The authors have nothing to disclose.
Financement: Ce travail a été soutenu par une subvention de la Fondation Bertarelli (DJL), un MED-EL subvention (DJL) et les Instituts nationaux de la santé Subventions DC01089 (RCM).
Name of the Material / Equipment | Company | Catalog Number |
Stereotaxic holder | Stoelting | 51500 |
Homeothermic blanket | Harvard | 507214 |
Scalpel blade #11 | Fine Surgical Tools | 10011-00 |
Iris scissor | Fine Surgical Tools | 14084-08 |
5 French suction | Symmetry Surgical | 2777914 |
Dental Points | Henry Schein | 100-8170 |
Bone rongeur | Fine Surgical Tools | 16020-14 |
10 µl Hamilton syringe | Hamilton | 7633-01 |
34 gauge, needle | Hamilton | 207434 |
Rongeurs | Fine Surgical Tools | 16021-14 |