Summary

从胚胎干细胞衍生心脏祖细胞

Published: January 12, 2015
doi:

Summary

In this protocol, derivation of cardiac progenitor cells from both mouse and human embryonic stem cells will be illustrated. A major strategy in this protocol is to enrich cardiac progenitor cells with flow cytometry using fluorescent reporters engineered into the embryonic stem cell lines.

Abstract

Cardiac progenitor cells (CPCs) have the capacity to differentiate into cardiomyocytes, smooth muscle cells (SMC), and endothelial cells and hold great promise in cell therapy against heart disease. Among various methods to isolate CPCs, differentiation of embryonic stem cell (ESC) into CPCs attracts great attention in the field since ESCs can provide unlimited cell source. As a result, numerous strategies have been developed to derive CPCs from ESCs. In this protocol, differentiation and purification of embryonic CPCs from both mouse and human ESCs is described. Due to the difficulty of using cell surface markers to isolate embryonic CPCs, ESCs are engineered with fluorescent reporters activated by CPC-specific cre recombinase expression. Thus, CPCs can be enriched by fluorescence-activated cell sorting (FACS). This protocol illustrates procedures to form embryoid bodies (EBs) from ESCs for CPC specification and enrichment. The isolated CPCs can be subsequently cultured for cardiac lineage differentiation and other biological assays. This protocol is optimized for robust and efficient derivation of CPCs from both mouse and human ESCs.

Introduction

心脏疾病仍然是世界上领先的原因今天和死亡率在过去二十年(美国心脏协会)大致维持不变。有用于开发新的治疗策略,以有效地防止或逆转心脏衰竭的重要需求。一个有希望的战略是基于细胞治疗造血干细胞生物学1的快速发展。在这点上,多能每次点击费用可能是一个很好的细胞来源的治疗,由于其增殖,但致力于仅心脏谱系分化的能力。因此,有效和可靠的方法来产生和分离的每次点击费用是对心脏细胞疗法的研究非常重要的。

该协议的重点是在早期胚胎发育,以及如何他们这一代人从胚胎干细胞识别胚胎的每次点击费用。不同的每次点击费用已分离出胚胎和成人的心,甚至从骨髓2。在胚胎发育,骨骼morphogeNETIC蛋白(BMP),无翅型MMTV整合位点家族成员(Wnts)和节点信号诱导Mesp1 +多能胚层3的承诺。 Mesp1 +细胞然后分化成胚胎每次点击费用4。这些每次点击费用通常标记HCN4,NK 2同源框5(NKX2-5),ISL LIM同源框1(Isl1),T型箱5(Tbx5中),和肌细胞增​​强因子2C(MEF2C),形成初级和第二心脏领域,并心脏发生5-10时导致心脏的主要部分。既NKX2-5 +和Isl1 + / + MEF2C每次点击费用是能够分化成心肌细胞,平滑肌细胞(SMC)和内皮细胞5-8。因此,这些每次点击费用会引起心脏血管系统以及心脏组织并且是一种理想的细胞源细胞系心脏疗法。因此, 在体外产生的每次点击成本一直是一大研究热点心血管研究。由于胚胎干细胞具有无限扩展能力次代表ICM细胞的囊胚阶段,下面自然胚胎发育胚胎干细胞分化成胚胎的每次点击成本被认为是获得每次点击费用的合理和有效的方法。

一个被广泛应用的方法,从胚胎干细胞获得的每次点击成本是胚胎干细胞聚集成胚11。以提高分化效率的基础上,心脏发育的知识定义的化学和生长因子已被用于12-14。然而,没有明确的中共标记,尤其无细胞表面标志物,其已被广泛接受的领域。为了解决这个问题,胚胎干细胞被设计为纪念Isl1 +或MEF2C +每次点击费用和他们使用的Cre / loxP系统荧光记者衍生物。 Cre重组酶是Isl1 / MEF2C子/增强子的控制下,在敲。改性荧光蛋白RFP或YFP基因由组成型启动子驱动的可通过FLOX终止密码子与Cre重组酶切除被激活(ISL1:CRE; pCAG-FLOX-STOP-FLOX-GFP或RFP / Isl1-CRE; Rosa26YFP / MEF2C-CRE; Rosa26YFP)5,6。一旦胚胎干细胞分化为第二心脏领域的每次点击费用Isl1 / MEF2C子/增强推动华创会激活荧光记者和每次点击费用,可以通过FACS净化富集。简言之,EB凝集法用于启动ESC分化。以提高分化的效率,所述分化细胞用抗坏血酸(AA)和生长因子如BMP4,活化素A和VEGF 13,15。该协议允许用小鼠和人胚胎干细胞强大的和高效率的CPC分化。

Protocol

从鼠标胚胎干细胞衍生1.小鼠胚胎的每次点击成本准备小鼠胚胎成纤维细胞(MEF中)饲养层。 暖MEF培养基(在DMEM 10%胎牛血清)至37℃。 准备明胶涂层板。 加入1毫升水的0.1%明胶的成井的6孔板或5毫升到10cm的培养皿中。 离开,在37℃的板或盘或室温下至少30分钟。渴望在使用前明胶。 解冻在37℃水浴中照射的MEF很快,轻轻摇动。 轻轻转移细?…

Representative Results

该协议显示了几个胚胎干细胞系的每次点击费用的推导。胚胎干细胞聚集形成EB分化为每次点击费用。胚胎干细胞是经常保持在MEF饲养( 图1A,F)和馈线分化前被移除。经聚集的胚胎干细胞的成胚在分化培养基( 图1B,G)中,所述第二形成的EB与BMP4和活化素A处理,以增强在小鼠细胞系( 图1C)中胚层的分化。胚胎干细胞分化成心肌谱系所确定的荧光蛋白质YF…

Discussion

This protocol combines a method using growth factors to guide mESCs differentiation and spontaneous differentiation of human ESCs into CPCs. CPC lineage marked with fluorescent reporter is used to efficiently identify and isolate CPCs by FACS. The FACS-purified CPCs retain the capacity to differentiate into cardiomyocytes, smooth muscle, and endothelial cells and have a comparable expression profile to the in vivo cells. Thus, these CPCs can serve as a great resource for cell based heart therapy because of their ability …

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Leonid Gnatovskiy for his carefully and critical reading of the paper. This work was supported in part by grants from the National Institutes of Health (HL109054) and the Samuel and Jean Frankel Cardiovascular Center, University of Michigan (Inaugural Fund) to WZ and from the Leon H Charney Division of Cardiology, New York University School of Medicine to BL.

Materials

Name Company Catalog Number
FBS Thermo scentific SH30070.03E
Knockout SR Life technology 10828028
Knockout DMEM Life technology 10829018
DMEM Life technology 11965118
NEAA Life technology 11140050
GlutaMAX Life technology 35050061
N2 Life technology 17502048
B27 Life technology 12587010
Ham’s F12 Life technology 11765062
IMDM Life technology 12440061
Pen/Strep Life technology 15140122
Pyruvate Life technology 11360070
Dispase Life technology 17105041
Stempro-34 Life technology 10639011
DMEM/F12 Life technology 11330032
BSA  Life technology 15260037
Trypsin  Life technology 25200056
Ascobic Acid  Sigma A5960
1-Thioglycerol Sigma M1753
2-Mercaptoethanol Sigma M3148
VEGF R&D 293-VE
Bmp4 R&D 314-BP
ActivinA R&D 338-AC
bFgf R&D 233-FB
Fgf10 R&D 345-FG
mTeSR Stemcell technologies 5850
Matrigel BD Biosciences 354277

Referencias

  1. Garbern, J. C., Lee, R. T. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell. 12 (6), 689-698 (2013).
  2. Passier, R., van Laake, L. W., Mummery, C. L. Stem-cell-based therapy and lessons from the heart. Nature. 453 (7193), 322-329 (2008).
  3. Bondue, A., Blanpain, C. Mesp1: a key regulator of cardiovascular lineage commitment. Circulation Research. 107 (12), 1414-1427 (2010).
  4. Bondue, A., et al. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell. 3 (1), 69-84 (2008).
  5. Bu, L., et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature. 460 (7251), 113-117 (2009).
  6. Lei, I., Gao, X., Sham, M. H., Wang, Z. SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development. The Journal of Biological Chemistry. 287 (29), 24255-24262 (2012).
  7. Lei, I., Liu, L., Sham, M. H., Wang, Z. SWI/SNF in cardiac progenitor cell differentiation. Journal of Cellular Biochemistry. 114 (11), 2437-2445 (2013).
  8. Wu, S. M., et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell. 127 (6), 1137-1150 (2006).
  9. Spater, D., et al. A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nature Cell Biology. 15 (9), 1098-1106 (2013).
  10. Verzi, M. P., McCulley, D. J., De Val, S., Dodou, E., Black, B. L. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Biología del desarrollo. 287 (1), 134-145 (2005).
  11. Boheler, K. R., et al. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circulation Research. 91 (3), 189-201 (2002).
  12. Wada, R., et al. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proceedings of the National Academy of Sciences of the United States of America. 110 (31), 12667-12672 (2013).
  13. Kattman, S. J., et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 8 (2), 228-240 (2011).
  14. Takahashi, T., et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation. 107 (14), 1912-1916 (2003).
  15. Wamstad, J. A., et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 151 (1), 206-220 (2012).
  16. Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339 (6121), 819-823 (2013).
  17. Ding, Q., et al. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 12 (4), 393-394 (2013).
  18. Gaj, T., Gersbach, C. S., Barbas, T. A. L. E. N. ZFN, TALEN, CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology. 31 (7), 397-405 (2013).
  19. Joung, J. K., Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews. Molecular Cell Biology. 14 (1), 49-55 (2013).
  20. Yang, H., et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 154 (6), 1370-1379 (2013).
  21. Mali, P., et al. RNA-guided human genome engineering via Cas9. Science. 339 (6121), 823-826 (2013).
  22. Laflamme, M. A., et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature. biotechnology. 25 (9), 1015-1024 (2007).
  23. Burridge, P. W., et al. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PloS One. 6 (4), e18293 (2011).
  24. Kouskoff, V., Lacaud, G., Schwantz, S., Fehling, H. J., Keller, G. Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America. 102 (37), 13170-13175 (2005).
  25. Xu, X. Q., et al. Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation: Research in Biological Diversity. 76 (9), 958-970 (2008).
  26. Lian, X., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America. 109 (27), E1848-1857 (2012).
  27. Bizy, A., et al. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes. Stem Cell Research. 11 (3), 1335-1347 (2013).

Play Video

Citar este artículo
Lei, I. L., Bu, L., Wang, Z. Derivation of Cardiac Progenitor Cells from Embryonic Stem Cells. J. Vis. Exp. (95), e52047, doi:10.3791/52047 (2015).

View Video