In this protocol, derivation of cardiac progenitor cells from both mouse and human embryonic stem cells will be illustrated. A major strategy in this protocol is to enrich cardiac progenitor cells with flow cytometry using fluorescent reporters engineered into the embryonic stem cell lines.
Cardiac progenitor cells (CPCs) have the capacity to differentiate into cardiomyocytes, smooth muscle cells (SMC), and endothelial cells and hold great promise in cell therapy against heart disease. Among various methods to isolate CPCs, differentiation of embryonic stem cell (ESC) into CPCs attracts great attention in the field since ESCs can provide unlimited cell source. As a result, numerous strategies have been developed to derive CPCs from ESCs. In this protocol, differentiation and purification of embryonic CPCs from both mouse and human ESCs is described. Due to the difficulty of using cell surface markers to isolate embryonic CPCs, ESCs are engineered with fluorescent reporters activated by CPC-specific cre recombinase expression. Thus, CPCs can be enriched by fluorescence-activated cell sorting (FACS). This protocol illustrates procedures to form embryoid bodies (EBs) from ESCs for CPC specification and enrichment. The isolated CPCs can be subsequently cultured for cardiac lineage differentiation and other biological assays. This protocol is optimized for robust and efficient derivation of CPCs from both mouse and human ESCs.
Herzkrankheit bleibt die führende Ursache in der heutigen Welt und die Todesraten haben in den vergangenen zwei Jahrzehnten (American Heart Association) nahezu unverändert geblieben. Es gibt einen dringenden Bedarf für die Entwicklung neuer therapeutischer Strategien effektiv verhindern oder rückgängig Herzinsuffizienz. Ein vielversprechender Ansatz ist zellbasierte Therapie nach der raschen Entwicklung von Stammzellen biology 1. In dieser Hinsicht könnte multi CPCs eine ausgezeichnete Zellquelle für die Therapie aufgrund ihrer Fähigkeit, sich zu vermehren, aber nur, um die Herzlinie Differenzierung gebunden werden. Daher effiziente und robuste Methode zur Erzeugung und Isolierung CPCs ist von großer Bedeutung für die Herzzelltherapie-Studien.
Dieses Protokoll konzentriert sich auf embryonale CPCs der frühen Embryogenese und wie ihre Generation von WSR identifiziert. Verschiedene CPCs wurden aus embryonalen und adulten Herzen isoliert worden, auch aus Knochenmark 2. Während der Embryonalentwicklung, Knochen morphogetische Proteine (BMPs), flügellosen Typ MMTV Integrationsstelle Familienmitglieder (Wnts) und Nodal-Signale induzieren das Engagement der Mesp1 + multi Mesoderm 3. Mesp1 + Zellen in die embryonale CPCs 4 unterscheiden dann. Diese CPCs werden typischerweise durch HCN4 markiert, NK2 homeobox 5 (NKX2-5) Isl LIM homeobox 1 (Isl1), T-box 5 (Tbx5) und Myozyten-Enhancer Faktor 2C (Mef2c), bilden primären und zweiten Herzfelder, und während Kardiogenese 5-10 tragen zu der Hauptteile des Herzens. Sowohl NKX2-5 + und Isl1 + / + Mef2c CPCs Lage sind, in Kardiomyozyten differenzieren, glatte Muskelzellen (SMCs) und Endothelzellen 5-8. So sind diese CPCs werden die zu Herzgefäßsystem sowie Herzgewebe zu geben und sind eine ideale Zellquelle für zellbasierte Herztherapie. Folglich erzeugen CPCs in vitro war ein wichtiger Forschungsschwerpunkt in der Herz-Kreislauf-Studien. Seit WSR haben unbegrenzte Erweiterungsmöglichkeiten einnd stellen die ICM-Zellen im Blastozystenstadium, ist die Differenzierung von WSR in embryonale CPCs nach der Naturembryogenese als eine logische und effektiven Ansatz zur CPCs zu erhalten.
Eine weit angelegte Herangehensweise an CPCs von WSR erhalten, ist die Wirtschafts- und Sozialräte in EBs 11 aggregieren. Die Differenzierung Effizienz zu verbessern, sind definierte chemische und Wachstumsfaktoren auf Basis der Kenntnis der Herzentwicklung verwendet worden, 12-14. Es gibt jedoch keine definitive CPC Marker, insbesondere keine Zelloberflächenmarkern, die allgemein auf dem Gebiet akzeptiert. Um dieses Problem anzugehen, WSR sind so konstruiert, Isl1 + oder Mef2c + CPCs und ihre Derivate mit fluoreszierenden Reporter mit Cre / loxP-System markieren. Die cre-Rekombinase in unter der Kontrolle Isl1 / Mef2c Promotor / Enhancer geklopft. Das modifizierte fluoreszierende Protein RFP oder YFP-Gen von einem konstitutiven Promotor angetrieben wird durch Exzision flox Stoppcodon mit cre-Rekombinase aktiviert werden(ISL1: cre; pCAG-flox-AUS-flox-GFP oder RFP / Isl1-cre; Rosa26YFP / Mef2c-cre; Rosa26YFP) 5,6. Sobald die Wirtschafts- und Sozialräte in zweiten Herzfeldes CPCs unterschieden werden Isl1 / Mef2c Promotor / Enhancer angetrieben cre die fluoreszierenden Reportern zu aktivieren und CPCs können durch FACS-Aufreinigung angereichert werden. Kurz gesagt, wird EB Aggregationsmethode verwendet werden, um ESC Differenzierung einzuleiten. Differenzierung Effizienz zu verbessern, werden die differenzierten Zellen mit Ascorbinsäure (AA) und Wachstumsfaktoren wie Bmp4, Activin A und VEGF 13,15 behandelt. Dieses Protokoll ermöglicht robuste und effiziente CPC Differenzierung sowohl mit Maus und Mensch WSR.
This protocol combines a method using growth factors to guide mESCs differentiation and spontaneous differentiation of human ESCs into CPCs. CPC lineage marked with fluorescent reporter is used to efficiently identify and isolate CPCs by FACS. The FACS-purified CPCs retain the capacity to differentiate into cardiomyocytes, smooth muscle, and endothelial cells and have a comparable expression profile to the in vivo cells. Thus, these CPCs can serve as a great resource for cell based heart therapy because of their ability …
The authors have nothing to disclose.
We thank Dr. Leonid Gnatovskiy for his carefully and critical reading of the paper. This work was supported in part by grants from the National Institutes of Health (HL109054) and the Samuel and Jean Frankel Cardiovascular Center, University of Michigan (Inaugural Fund) to WZ and from the Leon H Charney Division of Cardiology, New York University School of Medicine to BL.
Name | Company | Catalog Number |
FBS | Thermo scentific | SH30070.03E |
Knockout SR | Life technology | 10828028 |
Knockout DMEM | Life technology | 10829018 |
DMEM | Life technology | 11965118 |
NEAA | Life technology | 11140050 |
GlutaMAX | Life technology | 35050061 |
N2 | Life technology | 17502048 |
B27 | Life technology | 12587010 |
Ham’s F12 | Life technology | 11765062 |
IMDM | Life technology | 12440061 |
Pen/Strep | Life technology | 15140122 |
Pyruvate | Life technology | 11360070 |
Dispase | Life technology | 17105041 |
Stempro-34 | Life technology | 10639011 |
DMEM/F12 | Life technology | 11330032 |
BSA | Life technology | 15260037 |
Trypsin | Life technology | 25200056 |
Ascobic Acid | Sigma | A5960 |
1-Thioglycerol | Sigma | M1753 |
2-Mercaptoethanol | Sigma | M3148 |
VEGF | R&D | 293-VE |
Bmp4 | R&D | 314-BP |
ActivinA | R&D | 338-AC |
bFgf | R&D | 233-FB |
Fgf10 | R&D | 345-FG |
mTeSR | Stemcell technologies | 5850 |
Matrigel | BD Biosciences | 354277 |