Summary

鼠淋巴结基质细胞的分离

Published: August 19, 2014
doi:

Summary

Isolation of lymph node stromal cells is a multistep procedure including enzymatic digestion and mechanical disaggregation to obtain fibroblastic reticular cells, lymphatic and blood endothelial cells. In the described procedure, a short digestion is combined with automated mechanical disaggregation to minimize surface marker degradation of viable lymph node stromal cells.

Abstract

Secondary lymphoid organs including lymph nodes are composed of stromal cells that provide a structural environment for homeostasis, activation and differentiation of lymphocytes. Various stromal cell subsets have been identified by the expression of the adhesion molecule CD31 and glycoprotein podoplanin (gp38), T zone reticular cells or fibroblastic reticular cells, lymphatic endothelial cells, blood endothelial cells and FRC-like pericytes within the double negative cell population. For all populations different functions are described including, separation and lining of different compartments, attraction of and interaction with different cell types, filtration of the draining fluidics and contraction of the lymphatic vessels. In the last years, different groups have described an additional role of stromal cells in orchestrating and regulating cytotoxic T cell responses potentially dangerous for the host.

Lymph nodes are complex structures with many different cell types and therefore require a appropriate procedure for isolation of the desired cell populations. Currently, protocols for the isolation of lymph node stromal cells rely on enzymatic digestion with varying incubation times; however, stromal cells and their surface molecules are sensitive to these enzymes, which results in loss of surface marker expression and cell death. Here a short enzymatic digestion protocol combined with automated mechanical disruption to obtain viable single cells suspension of lymph node stromal cells maintaining their surface molecule expression is proposed.

Introduction

淋巴结有专门的隔间,其中对外国和自身抗原的适应性免疫应答发起和协调。这里介绍的过程描述很短的酶消化结合机械式自动移液获得淋巴结单细胞悬液,并获得可行的淋巴结基质细胞的维持几个分子的表面表达。

淋巴结基质细胞形成淋巴结的支架,履行三大职能:第一,他们筛选体液样品抗原,病原体及其病原相关分子模式(的PAMP),以及细胞因子与危险相关分子模式(D-AMPS)目前在体内。第二,它们吸引和指示的抗原呈递细胞(APC)和淋巴细胞相互作用,并启动适应性免疫应答;第三,他们为淋巴细胞1的稳态和分化的结构性环境-3。在炎症过程中淋巴结基质细胞产生的生长因子,细胞因子和趋化因子,适应肿胀从而组织树突状细胞(DC)之间的相互作用,T,和B细胞。免疫反应的编排是唯一可能的,因为由不同的基质细胞群体形成的复合结构的体系结构。

淋巴结基质细胞是CD45阴性细胞中,并且可以通过CD31的表达或GP38在成纤维细胞和内皮细胞1-6相区别。 GP38 + CD31 定义T区网状细胞(TRC,也被称为FRC:成纤维网状细胞),GP38 + CD31 +限定淋巴管内皮细胞(LEC),GP38 CD31 +限定血液内皮细胞(BEC)。此外,该亚群的特征显示其他淋巴结基质细胞的存在。事实上,小周细胞样细胞群进行了表征内GP38 CD31 人口7。因此,在分离过程中的适应是有利的,用于鉴定不同淋巴结基质细胞的功能特性和特征。

的淋巴结基质细胞消化之前开发协议淋巴结基质细胞的研究是利用组织切片和显微镜不限于原位观测。然而,结构和功能研究表明,淋巴结基质细胞的重要特征。淋巴结基质细胞与平足,胶原和细胞外基质(ECM)蛋白结合以形成所谓的管道系统中的复杂的三维结构,其输送淋巴和相关联的低分子量蛋白质的淋巴结的囊下窦的高内皮微静脉中的T细胞区8。 DC是在与基质细胞紧密接触,并且可以观察到突出到管状CONduit结构来样液和检测抗原8。淋巴结基质细胞(储税券和淋巴管内皮细胞)与DC的相互作用是由趋化因子CCL21和CCL19 9,10释放和呈现介导的。 CCL19和CCL21通过CCR7受体促进树突状细胞和T细胞迁移至淋巴结的T细胞区4,11确认。尽管使用类似的趋化因子,树突状细胞和T细胞有不同的迁徙路线进入淋巴结12。后来,使用淋巴结和纯淋巴结基质细胞分离的酶消化,功能研究,对不同淋巴结基质细胞的作用和其与DC和T / B细胞6,13相互作用的能力进行的。首先,IFN-γ的产生的效应T细胞和淋巴结基质细胞之间的交调失真引起的生产所示以抑制T细胞应答和增殖中的次级淋巴器官14-16的代谢物的一氧化氮。二,淋巴Ñ赋基质细胞已报告,以支持监管DC亚群的分化通过产生IL-10的17的,并通过产生IL-7 6,18的调节幼稚T细胞稳态。三,淋巴结基质细胞Toll样受体的表达表明,基质细胞很容易受到信号从组织损伤时释放的感染或自身分子而得。的确,淋巴结基质细胞与TLR3聚配体的治疗(I:C)诱导主要组织相容性复合体I类表达和共同抑制分子PD-L1的表达上调的适度上调,但不是共刺激分子,从而导致外周组织的急剧变化抗原表达19。几个小组已经表明淋巴结基质细胞表达外周组织中的抗原并诱导自身反应性T细胞19,21-27的耐受性。因此,了解淋巴结基质细胞和其它迁移和再之间的相互作用目前主席淋巴结细胞,将有助于找到新的目标分子,以允许在炎症期间激活或抑制免疫应答。因此,淋巴结的出版酶的分离的实施是必要的。

先前公布的协议使用胶原酶类酶消化具有低机械应力6,19,20的不同组合。然而,长期的孵化与消化酶或消化酶的不同组合,可能会降低分析的激活状态,并确定新的淋巴结基质细胞所需的各种表面分子。根据不同的基质细胞的分析的类型,链路协议或弗莱彻协议可能是更适合的。在所描述的过程中,稍短酶消化结合了自动机械解聚作用,以减少可行淋巴结基质细胞的表面标记物的降解。此过程使高度可重复的分离和区分淋巴结基质细胞群与低变异性和超过95%的存活率。将新鲜分离的淋巴结基质细胞可直接用于表面标志物表达,蛋白质分析和转录的研究,以及建立基质细胞系在体外进行功能测定

Protocol

在这个视频发布和协议,所有动物的程序按照批准的州局巴塞尔城市,瑞士动物的协议进行的。 1,淋巴结制备及消化在烧杯中,以37℃的磁力搅拌器与加热板预热水。 制备基本培养基如下:DMEM培养基(不含丙酮酸)补充有2%FCS,1.2mM的氯化钙和青霉素/链霉素(100单位的青霉素,100微克链霉素)。 在使用前消毒所有的解剖工具。 安乐死?…

Representative Results

本协议是出版Link 等人 ,2007年6具有更短的消化时间(45分钟,最大)由于机械解聚与自动化多通道移液管的变形消化协议。此外,该过程是更加标准化,最大限度地减少了对不同淋巴结的基质细胞表面标记物的降解,并且允许多于一个样品的处理在同一时间。 胶原酶IV和胶原酶D IN链接协议6和目前的协议或胶原酶P和中性蛋白酶到-Fletchers协议13?…

Discussion

淋巴结基质细胞的研究最近成为研究的热点,由于两个出版消化协议6,13的发展。这两种协议是足够获得单个淋巴结基质细胞,但不同之处在于使用消化酶和消化的时间。自基质细胞和其表面标志物是酶消化和机械应力敏感,一个优化的协议是必须的。

可行的淋巴结基质细胞从新鲜解剖淋巴结的隔离是为了进行表型和功能的分析的第一步。因此,在限定的酶浓度要仔?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

The authors thank Sanjiv Luther and colleagues for helpful discussions in establishing the current lymph node digestion protocol. This work was supported by SNF grants PPOOA-_119204 and PPOOP3_144918 to S.W.R.

Materials

DMEM LifeTechnologies-Gibco 41965-039
FCS Final concentration 2%
CaCl2 Sigma 499609 Final concentration 1.2 mM
Collagenase IV Worthington Biochemical Corporation >160 units per mg dry weight, use at final concentration of 1 mg/ml
Collagenase D Roche 11088882001 use at 3.5 mg/ml
DNAse I Roche  11284932001 use at 40 µg/ml
stiring magnets FAUST 5 mm long-2 mm ø
Polystyren Round-Bottom Tubes 5ml Falcon-BD Bioscience
Magnetic stirrer with heating funktion IKA-RCT-standard 9720250
Petridishes 100 mm, sterile TPP 6223201
25G needles Terumo
anti mouse CD45 Ab Biolegend Clone 30-F11
anti mouse CD11c Ab Biolegend Clone N418
anti mouse Podoplanin Ab Biolegend Clone 8.1.1
anti mouse CD31 Ab Biolegend Clone MEC13.3

Eppendorf Xplorer plus, Multichannel
Eppendorf 4861 000.821/830 1.250 µl max. volume
anti mouse CD140a Biolegend Clone APA5
anti mouse CD80 Biolegend Clone 16-10A1
anti mouse CD40 Biolegend Clone 1C10
anti mouse I-Ab Biolegend Clone AF6-120.1
anti mouse CD274 (PD-L1) Biolegend Clone 10F.9G2
LIVE/DEAD Fixable Near-IR Dead Cell stain kit Invitrogen L10119

Referencias

  1. Mueller, S. N., Ahmed, R. Lymphoid stroma in the initiation and control of immune responses. Immunological reviews. 224, 284-294 (2008).
  2. Roozendaal, R., Mebius, R. E. Stromal Cell – Immune Cell Interactions. Annual Review of Immunology. 29 (1), 23-43 (2011).
  3. Turley, S. J., Fletcher, A. L., Elpek, K. G. The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nature Reviews Immunology. 10 (12), (2010).
  4. Bajénoff, M., et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity. 25 (6), 989-1001 (2006).
  5. Katakai, T., Hara, T., Sugai, M., Gonda, H., Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. The Journal of experimental medicine. 200 (6), 783-795 (2004).
  6. Link, A., et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nature Immunology. 8 (11), 1255-1265 (2007).
  7. Malhotra, D., et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nature Immunology. 13 (5), 499-510 (2012).
  8. Gretz, J. E., Norbury, C. C., Anderson, A. O., Proudfoot, A. E., Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. The Journal of experimental medicine. 192 (10), 1425-1440 (2000).
  9. Sixt, M., et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity. 22 (1), 19-29 (2005).
  10. MartIn-Fontecha, A., et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. The Journal of experimental medicine. 198 (4), 615-621 (2003).
  11. Luther, S. A., Tang, H. L., Hyman, P. L., Farr, A. G., Cyster, J. G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proceedings of the National Academy of Sciences of the United States of America. 97 (23), 12694-12699 (2000).
  12. Braun, A., et al. Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nature Immunology. 12 (9), 879-887 (2011).
  13. Fletcher, A. L., et al. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Frontiers in immunology. 2, 35 (2011).
  14. Lukacs-Kornek, V., et al. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nature Immunology. 12 (11), 1096-1104 (2011).
  15. Siegert, S., et al. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS ONE. 6 (11), e27618 (2011).
  16. Khan, O., Headley, M., Gerard, A., Wei, W., Liu, L., Krummel, M. F. Regulation of T cell priming by lymphoid stroma. PLoS ONE. 6 (11), e26138 (2011).
  17. Svensson, M., Maroof, A., Ato, M., Kaye, P. M. Stromal cells direct local differentiation of regulatory dendritic cells. Immunity. 21 (6), 805-816 (2004).
  18. Onder, L., et al. Endothelial cell-specific lymphotoxin-β receptor signaling is critical for lymph node and high endothelial venule formation. The Journal of experimental medicine. 210 (3), 465-473 (2013).
  19. Fletcher, A. L., et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. The Journal of experimental medicine. 207 (4), 689-697 (2010).
  20. Fletcher, A. L., Malhotra, D., Turley, S. J. Lymph node stroma broaden the peripheral tolerance paradigm. Trends in Immunology. 32 (1), 12-18 (2011).
  21. Cohen, J. N., et al. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. Journal of Experimental Medicine. 207 (4), 681-688 (2010).
  22. Lee, J. -. W., et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol. 8, 181-190 (2006).
  23. Nichols, L. A., et al. Deletional self-tolerance to a melanocyte/melanoma antigen derived from tyrosinase is mediated by a radio-resistant cell in peripheral and mesenteric lymph nodes. J Immunol. 179, 993-1003 (2007).
  24. Gardner, J. M., et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science. 321, 843-847 (2008).
  25. Gardner, J. M., et al. Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4+ T cells. Immunity. 39, 560-572 (2013).
  26. Magnusson, F. C., et al. Direct presentation of antigen by lymph node stromal cells protects against CD8 T-cell-mediated intestinal autoimmunity. Gastroenterology. 134, 1028-1037 (2008).
  27. Tewalt, E. F., et al. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood. 120 (24), 4772-4782 (2012).

Play Video

Citar este artículo
Broggi, M. A. S., Schmaler, M., Lagarde, N., Rossi, S. W. Isolation of Murine Lymph Node Stromal Cells. J. Vis. Exp. (90), e51803, doi:10.3791/51803 (2014).

View Video