Yüksek verimli bir potansiyele sahip olan yeni microdevice malzemeler ile üç boyutlu (3D) dielektroforez (DEP) göstermek için kullanılır. Grafen nanoplatelet kağıt ve çift taraflı bant dönüşümlü yığılmış; 700 ml'lik bir mikro-gözenekli tabakaların enine delinmiştir. Polistiren boncuklar DEP davranışı mikro iyi gösterilmiştir.
50 mikron kalınlığında grafen kağıdı ve 100 mikron çift taraflı bant kullanarak yeni bir 3D elektrot mikrocihazda tasarım ve imalat açıklanmıştır. Protokol çok yönlü, yeniden kullanılabilir, çoklu katman, lamine dielektroforez odasını oluşturmak için prosedürleri ayrıntıları. Özel olarak, x 0.7 cm x 2 cm graphene kağıt 50 um ve çift taraflı bant beş kat altı tabakaları dönüşümlü olarak bir araya konmuş, daha sonra, bir cam slayt kenetlenir. Daha sonra, bir 700 mikron çapında mikro zamanda bir bilgisayar kontrollü mikro delme makinesi kullanılarak tabakalı yapısı ile delinmiştir. Komşu grafen katmanları arasında bant tabakasının yalıtım özellikleri direnç testleri ile güvence verildi. Gümüş iletken epoksi grafen kağıdı alternatif katmanları bağlı ve grafen kağıdı ve dış bakır tel elektrotlar arasında istikrarlı bağlantıları kurdu. Bitmiş cihaz kilitlenir ve daha sonra, cam bir kapak ile kapatılır. Elektrik alan degrade t içinde modellenmişO çok katmanlı cihaz. 6 um polistiren boncuklar dielelektroforetik davranışları 0.0001 S / m 1.3 S / m arasında değişen orta iletkenlik derin mikro de 1 mm gösterdiği ve 10 MHz 100 Hz sinyal frekansları uygulanmıştır. Olumsuz dielelektroforetik tepkiler frekans değerleri, daha önce bildirilen literatür değerleri ile tutarlıdır iletkenlik frekans alanı ve çaprazlama en fazla üç boyutlu olarak gözlenmiştir. Cihaz AC elektroozmoz ve elektro-düşük ve yüksek frekans bölgelerinde meydana gelen akışları, sırasıyla engel olamadı. Bu cihazın kullanılan grafen kağıdı yönlüdür ve dielektroforetik karakterizasyonu tamamlandıktan sonra sonradan bir biyosensör olarak işlev olabilir.
Grafen yüksek kaliteli elektronik özellikleri ve potansiyel kimyasal ve biyosensör uygulamalarında 1 için bilinen yeni bir malzemedir. Grafen nanoplatelets katalizör desteği 2, 3, 4 biyosensörler, süper kondansatör 5 ve grafin / polianilin ve silikon nanopartikül / graphene kompozitler 6-8 içeren kompozit elektrotlar kullanılmaktadır. Bu el yazması eşsiz bir üç boyutlu (3D) elektrotlar, katmanlı mikroakışkan cihazı olarak grafen kağıdı kullanımını açıklar. Grafen kağıt elektrotlar olarak yalıtkan, çift taraflı bant ve polistiren boncuklar 3D AC dielektroforez uygulandı, içinde delinmiş bir bölme ile lamine edilmiştir.
Dielektroforez, (DEP) eşit olmayan elektrik alanlarının altında polarize parçacıkların hareketi ifade eder. Partiküller daha fazla veya daha az polarize olabilir çevreleyen ortam, resu daha olduğunda pozitif DEP (pDEP) veya negatif DEP (NDEP) ortaya çıkarsırasıyla, güçlü ya da zayıf elektrik alanına doğru hareketi lting. Bu doğrusal olmayan elektrokinetik aracı, ayırma yakalama ve parçacıklar ve biyolojik hücre kimlik, 9-15 arasında, ayrılması için kullanılmıştır. Bir polarize parçacığın karşılaştığı dielektroforetik kuvvet elektrik alan gradyan, partikül çapı ve şekli, iletkenlik ve geçirgenlik gibi parçacık dielektrik özelliklerinin yanı sıra medya iletkenlik ve geçirgenlik bir fonksiyonudur. Geleneksel iki boyutlu (2B) DEP olarak, tipik haliyle parçacık hareket mikrofabrike yüzeye elektrotlar arasında oluşan elektrik alanının gradyanı birincil düzleminde olduğu; dikey yönde hareket en cihazlarda in-düzlem yönlerde kıyasla ihmal edilebilir düzeydedir. Ancak, 3D DEP için elektrik alan degradelerin bu üçüncü boyut koşan daha yüksek örnek sağlar ve akış trave olduğu yeni ve geliştirilmiş dielektroforetik ayrımlarını tasarım çok yönlülüğü artırıralana RSE 16, 17, gradyanlar. Diğer özel tasarımlar 3D izolatör-tabanlı DEP 18, 3D karbon-elektrot DEP 13, 19, ve DEP 10 galvanik 3D içerir. 3B yapılar halinde araştırma kanıtladığı gibi, bu cihazlar yüksek verim elde etmek için sürekli bir akış modunda çalıştırılabilir. Bizim katmanlı 3B cihazında 3D parçacık hareketinin gözlenmesi farklı odak yüksekliklerde ışık mikroskobu ile frekans ve orta iletkenliğinin bir fonksiyonu olarak elde edilmektedir.
Fatoyinbo vd. Ilk alternatif yığılmış 30 mikron alüminyum folyo ve 150 mikron epoksi reçine filmleri 20 kullanılarak elektrot / yalıtım yapıya lamine bir 3D DEP bildirdi. Hubner vd. Sonra 35 mikron bakır şerit ve 118 mikron poliimit yapıştırıcı 21 ile benzer 3D lamine elektrotları tasarlanmıştır. Bu çalışma, 3D-iyi tasarım 22, 23 ödünç, Ve eşsiz bir sızdırmazlık ve yeterli elektrik koruma elde yalıtım katmanları olarak iletken tabaka ve 100 um çift taraflı bir bant olarak 50 um grafin kağıt kolaylık kullanır. Grafen nanoplatelets anda bu grup daha önce 24 gösterildiği biyosensör olarak hareket yeteneğine sahip, çünkü Grafen kağıdı yönlülüğü 3D elektrot mikrocihazlar için ayrı bir avantajdır.
Grafen kağıdı / polimer içinde elde alan eğimleri 3D mikrovasıtalar mikro kuyu boyutları, grafen kağıt katmanları ve uygulanan elektrik alan bağlıdır lamine. Kritik boyutlar dikey elektrot boşluğu (tabaka kalınlıkları iletken ve yalıtkan) ve mikro-kuyu çapı ve yüksekliği (yığılı katmanları tarafından belirlenir) içerir. Elektrik sinyali genliği ve frekansı ile ayarlanmış olabilir. Geçerli aygıt yapısı toplu işlem için, ama sürekli bir akış cihazı için uygun olabilir. Cihaz fabBurada anlatılan teknik, rication 3D sadece kullanılan grafen kağıdı alışverişi grafin nanoplatelet özelliklerinin geniş bir yelpazede olan elektrotlar lamine geliştirmek için uygundur. Grafen kağıdı kullanan Avantajları fiziksel ve kimyasal özelliklerinin çok yönlülük, azaltılmış gider, ve biyosensörler bioanalytes 24 geniş bir tespit olarak grafen nanoplatelets aynı anda hareket edebilir. Yüksek kapasiteli 3D DEP sistemlerinin uzun vadeli hedefleri hızla hücre tipleri 25-27 tanımlamak, ya da sağlıklı hücrelerin 28 popülasyonlarında hastalıklı hücrelerin etiket ücretsiz, elektriksel aracılı hücre sıralamayı elde etmek için vardır. Bu kağıt malzeme optimizasyonu ve gösterim ve tipik sonuçların analizi, ardından cihaz hazırlık ve işlem gösterilmektedir.
Bu el yazması bir roman 6 grafen tabakası ve 5 bant katmanı mikrocihazda imalatı için protokoller ayrıntıları. Ayrıca, cihaz işlemi benzersiz, geometrik ilgili parçacık hız analizi yaklaşımı ile birlikte 6.08 mikron polistiren boncuklar gözlenen DEP davranışları aracılığıyla gösterilmektedir. Aynı derecede güvenilir sonuçlar veren ise doğrusal olmayan elektrokinetik cihazlar oluşturmak için bu çok yönlü yaklaşım, elektrot ve akışkan tabaka mikroimalat tekniklerden daha az maliyetlid…
The authors have nothing to disclose.
Grafen kağıdı cömert bağış için XG Bilimleri teşekkürler. Cömertçe bize mikro-sondaj ekipmanları kullanmak için icar Dr C. Friedrich sayesinde. Özel bir teşekkür videoyu anlatan için Tayloria Adams uzatıldı.
Reagents | |||
Name of Reagent | Company | Catalogue Number | Comments |
Polystyrene Beads | Spherotech, Inc. | PP-60-10 | 6.08 um diameter |
Graphene paper | XG Sciences, Inc. | XG Leaf B-072 | |
Double sided tape | 3M | N/A | 136 office tape |
Silver conductive epoxy | MG chemicals | 8331-14G | Part A &B included |
Mannitol | Sigma Aldrich | 091M0020V | |
Phosphate buffer saline | OmniPur | 0381C490 | |
Equipment: | |||
Name of equipment | Company | Catalogue Number | Comments |
Microscope (CCD Camera) | Zeiss | Axiovert 200M | |
Function/waveform generator | Agilent | 33250A | |
Syringe | Hamilton | 84505 | |
Paper Clamp | ADAMS | 3300-50-3848 | |
Oven | Fisher Scientific | 280A | |
Multimeter | OMEGA | HHM25 | |
Micro-milling machine | AEROTECH | ABL1500 stages/A3200 Npaq controller | |
End mill | ULTRATOOL | 708473 | |
AxioVision | Zeiss | Version4.8 |