Микроприбор с высокой пропускной потенциал используется для демонстрации трехмерных (3D) диэлектрофореза (DEP) с новыми материалами. Графен nanoplatelet бумаги и двусторонний скотч поочередно укладываются; микро-хорошо 700 мкм была пробурена поперек слоев. DEP поведение полистирольных шариков была продемонстрирована в микро-и.
Проектирование и изготовление нового 3D электрода Microdevice, используя 50 мкм толщиной графена бумагу и 100 мкм двусторонний скотч описывается. Подробнее Протокол процедуры построить универсальный, многоразовые, многослойный, ламинированные диэлектрофореза камеру. В частности, шесть слоев 50 мкм х 0,7 см х 2 см графен бумаги и пяти слоев двухсторонней ленты поочередно сложены вместе, то прижимается к предметное стекло. Тогда диаметр мкм микро-и 700 была пробурена через слоистой структуры с использованием компьютерным управлением микро сверлильный станок. Изоляционные свойства ленты слоя между соседними слоями графена были уверены по тестам сопротивления. Серебряный проводящий эпоксидный связаны альтернативные слоев графена бумаги и формируются стабильные связи между графеновой бумаги и внешних медных проводов электродов. Затем готовый устройство зажимали и опечатаны в стекло. Градиент электрического поля была смоделирована в тон многослойный устройство. Dielectrophoretic поведение 6 мкм полистирольных шариков были продемонстрированы в 1 мм глубиной микро-а, со средними проводимости, начиная от 0,0001 См / м до 1,3 См / м, и применяются частоты сигнала от 100 Гц до 10 МГц. Отрицательные dielectrophoretic ответы наблюдались в трех измерениях на большей части проводимости частотном пространстве и частоты кроссовера значения согласуются с ранее значения литературы. Устройство не помешало переменного тока Электроосмос и электротермические потоки, которые произошли в регионах низких и высоких частот, соответственно. Графен бумага используется в этом устройстве является универсальным и впоследствии может функционировать в качестве биосенсора после dielectrophoretic характеризации являются полными.
Графен представляет собой новый материал известен своими высококачественных электронных свойств и потенциальных химических и биосенсоров приложений 1. Графен нанопластинок были использованы для катализатора поддержки 2, 3, биосенсоров 4, супер-конденсаторов 5 и композитных электродов в том числе графена / полианилина и кремния наночастиц / графеновых композитов 6-8. Эта рукопись описывает использование графена бумаги в качестве электродов в уникальной трехмерной (3D), слоистой микрожидкостных устройств. Графен бумаги электроды с прослойкой из изолирующего двухсторонней ленты и камеры высверленное течение которого была осуществлена 3D AC диэлектрофорез из полистирола.
Диэлектрофорез (DEP) относится к движению поляризуемых частиц при неоднородных электрических полей. Положительный DEP (pDEP) или отрицательный DEP (ППСИ) происходит, когда частицы являются более или менее поляризуемый, чем окружающая среда, Resulting в движении к сильнейшей или слабого электрического поля, соответственно. Это нелинейное электрокинетический инструмент был использован для разделения, сортировка, заманивая в ловушку, и идентификация частиц и биологических клеток 9-15. Dielectrophoretic сила испытывали на поляризованной частицы является функцией градиента электрического поля, радиуса и формы частиц, частиц диэлектрических свойств, включая проводимости и диэлектрической проницаемости, а также медиа проводимости и диэлектрической проницаемости. В традиционной двумерной (2D) DEP, движение частиц в первичном плоскости градиентом электрического поля, как правило, образованной между микроизготовленном поверхностных электродов; движение в вертикальном направлении незначительна по сравнению с в плоскости направлений в большинстве устройств. Тем не менее, оседлать эту третье измерение электрических градиентов поля для 3D DEP позволяет высокая производительность и увеличивает универсальность для разработки новых и усовершенствованных dielectrophoretic разделения, в котором поток травеRSE в поле градиентов 16, 17. Другие конкретные проекты включают 3D изолятор на основе DEP 18 углерода 3D-электрода DEP 13, 19, и 3D гальванических DEP 10. Как свидетельствуют исследования в 3D структур, такие устройства могут работать в режиме с непрерывным потоком для достижения более высокую пропускную. Наблюдение движения 3D частиц в нашей слоистой 3D устройства достигается в зависимости от частоты и средней проводимости через световой микроскопии при различных фокальных высоты.
Fatoyinbo соавт. Впервые сообщил DEP в 3D слоистой структуры электрод / изоляции с использованием в качестве альтернативы сложены 30 мкм алюминиевой фольги и 150 мкм эпоксидная смола фильмы 20. Хюбнер и др.. Затем разработаны аналогичные 3D ламинированные электроды с 35 мкм медной ленты и 118 мкм полиимидной клея 21. Эта работа занимает дизайн 3D-а 22, 23И однозначно использует удобство 50 мкм графеновом бумаги в качестве проводящих слоев 100 мкм двухсторонней ленты, как изолирующих слоев, которые достигли герметизации электрических и достаточно экранирование. Графен бумаги универсальность является особым преимуществом для 3D электродных микроустройств потому что графеновые нанопластинок имеют возможность одновременно выступать в качестве биосенсоров, которые эта группа ранее продемонстрировали 24.
Полевые градиенты, достигнутые в графеновой бумаги / полимера ламинированные 3D микроприборы зависят от размеров микро-а, графеновых слоев бумаги и приложенного электрического поля. Критические размеры включают вертикальную расстояние между электродами (проведение и изолирующую толщины слоев) и диаметр микро-а и высоту (определяется слоев сложены). Электрический сигнал может быть настроен через амплитудой и частотой. Структура ток устройства для пакетной обработки, но могут быть приспособлены к непрерывной устройства потока. Потрясающий устройствотехника rication описано здесь подходит для разработки 3D ламинированные электроды с широким спектром свойств графена nanoplatelet просто путем замены графена бумагу использованы. Преимущества использования графена бумаги являются универсальность физических и химических свойств, снижение издержек, и графеновые нанопластинок может одновременно выступать в качестве биосенсоров для обнаружения широкий спектр bioanalytes 24. Долгосрочные цели с высокой пропускной 3D систем DEP являются быстро идентифицировать типы клеток 25-27, или достичь без наклеек, электрически опосредованную клеточную сортировку больных клеток из популяций здоровых клеток 28. Эта статья демонстрирует оптимизацию материала и подготовку и работу устройств с последующей иллюстрации и анализа типичных результатов.
Эта рукопись детали протоколов для изготовления графена слой роман 6 и 5 лента слоя микроустройство. Кроме того, работа устройства иллюстрируется с помощью наблюдаемых DEP поведения 6,08 мкм полистирольных шариков вместе с уникальным, геометрически соответствующей подхода анализа части?…
The authors have nothing to disclose.
Благодаря XG наук для щедрые пожертвования графена бумаги. Благодаря д-р К. Фридриха для щедро позволяя нам использовать микро-буровое оборудование. Особая благодарность распространяется на Tayloria Адамс для повествующая видео.
Reagents | |||
Name of Reagent | Company | Catalogue Number | Comments |
Polystyrene Beads | Spherotech, Inc. | PP-60-10 | 6.08 um diameter |
Graphene paper | XG Sciences, Inc. | XG Leaf B-072 | |
Double sided tape | 3M | N/A | 136 office tape |
Silver conductive epoxy | MG chemicals | 8331-14G | Part A &B included |
Mannitol | Sigma Aldrich | 091M0020V | |
Phosphate buffer saline | OmniPur | 0381C490 | |
Equipment: | |||
Name of equipment | Company | Catalogue Number | Comments |
Microscope (CCD Camera) | Zeiss | Axiovert 200M | |
Function/waveform generator | Agilent | 33250A | |
Syringe | Hamilton | 84505 | |
Paper Clamp | ADAMS | 3300-50-3848 | |
Oven | Fisher Scientific | 280A | |
Multimeter | OMEGA | HHM25 | |
Micro-milling machine | AEROTECH | ABL1500 stages/A3200 Npaq controller | |
End mill | ULTRATOOL | 708473 | |
AxioVision | Zeiss | Version4.8 |