Обонятельные модели активации рецептора кодировать личность запах, но отсутствие опубликованных данных, идентифицирующих одоранта лиганды для млекопитающих обонятельных рецепторов препятствует развитию комплексной модели кодирования запахов. Этот протокол описывает способ, чтобы облегчить идентификацию высокой пропускной обонятельных рецепторных лигандов и количественного определения активации рецептора.
Отдушки создавать уникальные и перекрывающиеся паттерны активации обонятельных рецепторов, что позволяет семейство примерно 1000 мышиных и 400 человека рецепторов признать тысячи пахучих веществ. Одоранта лиганды были опубликованы для меньше чем на 6% человеческих рецепторов 1-11. Это отсутствие данных отчасти из-за трудностей функционально, выражающих эти рецепторы в гетерологичных системах. Здесь мы описываем способ для выражения большинство обонятельной семейства рецепторов в клетках Hana3A, а затем оценки высокой пропускной активации обонятельного рецептора с использованием репортера люциферазы анализа. Этот анализ может быть использован для (1) экрана панелей пахучих веществ против панелей обонятельных рецепторов; (2) подтвердить взаимодействие одоранта / рецептора с помощью кривых доза-ответ; и (3) сравнить уровни активации рецептора среди вариантов рецепторов. В наших выборочных данных, 328 обонятельные рецепторы были отобраны в отношении 26 пахучих веществ. Пары одоранта / рецепторов с различной оценки реагирования были селекцияТед и испытаны в зависимости от дозы. Эти данные свидетельствуют о том, что экран является эффективным методом для обогащения пар одоранта / рецепторов, что пройдет эксперимент доза-ответ, то есть рецепторы, которые имеют добросовестное ответ на одоранта. Таким образом, эта высокой пропускной люциферазы анализ является эффективным методом для характеристики обонятельных рецепторов-важный шаг на пути модели запаха кодирования в обонятельной системы млекопитающих.
Обонятельной системы млекопитающих обладает способностью реагировать на огромное количество пахучих стимулов, что позволяет для обнаружения и дискриминации тысяч пахучих веществ. Обонятельные рецепторы (ОШ) молекулярные датчики, выраженные обонятельных сенсорных нейронов в обонятельный эпителий 12. Млекопитающих признание запах происходит через дифференциальной активации ORs по пахучих веществ, а также ИЛИ семейство генов, весьма обширен, с примерно 1000 мышиных и 400 человека рецепторов 12-16. Предыдущие функциональный анализ ORs в обонятельных нейронов и в гетерологичных клетках показали, что различные отдушки признаны уникальным, но перекрывающихся ансамбли ОШ 10,17-20. Соответствующие лиганды к ORs имеет решающее значение для понимания обонятельный код и необходимы для построения жизнеспособных моделей обоняния. В связи с трудностями, экспрессирующих ORs в гетерологичных системах, а также большого количества обоих одорантов и ОР, эти данные в значительной степени отсутствует из Fдно сть; действительно, менее 6% человеческих ORs есть опубликованный лиганд 1-11. Этот протокол описывает использование люциферазы охарактеризовать одоранта / или взаимодействий. Этот анализ позволяет с высокой пропускной характеристику ORs, задачу, которая имеет важное значение для понимания одоранта / или взаимодействий, а также разрабатывает модель кодирования запахов.
Высокая пропускная исследования ORs сталкиваются с тремя основными проблемами. Во-первых, ОШ, выраженные в гетерологичных клетках были сохранены в ЭР, а затем разрушается в протеасомы 21,22, предотвращая ПРС от взаимодействия с одорантов в системе анализа 23-25. Эта проблема была адресована в связи с открытием вспомогательных белков, которые способствуют стабильной клеточной поверхности выражение широкого спектра ПРС 19,26,27. Рецептор-транспортер-белки 1 и 2 (RTP1 и 2) содействие или выражение клеточной поверхности и активация в ответ на одоранта стимуляции 19. На основе этой работы, HEK293T клеткиизменение в стабильной экспрессии RTP1 длинный (RTP1L) и RTP2, рецептор экспрессии белка, повышающих 1 и G αolf, в результате клеточной линии Hana3A 19,27. Кроме того, мускариновых рецепторов ацетилхолина типа 3 (M3-R) взаимодействует с ОР на поверхности клеток и усиливает активацию в ответ на одорантов 26. Котрансфекция из или RTP1S и M3-R в Hana3A клетках приводит к надежной, последовательной и функциональная экспрессия широкого круга ORs на клеточной поверхности 27. Во-вторых, млекопитающих или репертуары довольно большие. У человека, например, в репертуаре или на порядок больше, чем вкусовой репертуара рецепторов, и на 2 порядка больше, чем визуального репертуара рецепторов. Хотя клонирование одного или является относительно простым протоколом, значительная авансовые усилий требуется для создания обширную библиотеку. В-третьих, хотя мы знаем, что в видении, длина волны приводит к цвету ив частоте прослушивание переводит на поле, организация запахов еще плохо изучены, что затрудняет для исследователей для интерполяции из репрезентативной выборки пахучих веществ. Несмотря на некоторый прогресс был достигнут на этой передней 10,28, карта обонятельной пейзаж остается неполным. Скрининг десятки тысяч молекул против сотен ORs является непростой задачей; высокой пропускной экраны в этой области требуют тщательно определенные кампании. Основными нерешенные проблемы являются те, логистики и стоимости, а не проблем, связанных с техникой. Хотя гетерологичная скрининг не была широко используется для идентификации лигандов на академических групп, частная компания использовала ту же технику, чтобы определить лигандов на 100 человека ORs 29. К сожалению, эти данные остаются частной собственностью.
Высокой пропускной люциферазы анализа изложены здесь имеет ряд преимуществ по сравнению с альтернативными методами, используемыми для оценки или активации. Хотя ответственСЭС родных обонятельных сенсорных нейронов были измерены с помощью электрофизиологии и визуализации кальция, эти методы трудно дразня друг от друга, которые ИЛИ приводит к реакции нейрона из-за перекрытия в свойствах реагирования для обонятельных нейронов. Хотя стук-в GFP-меченого рецептора типа 30,31, обеспечивая специфические рецепторы через аденовируса с мышиным обонятельные нейроны 32,33, или при выполнении ОТ-ПЦР после записи 17,24,33 можно связать записи на отдельных типов рецепторов, эти методы низкой пропускной способности и не подходит для крупномасштабных экранов. Гетерологичные системы скрининга более масштабируемой и две основные формы встречаются в литературе: цАМФ проводящих путей репортеры и инозиттрифосфата (IP3) путь журналистам. После запаха стимуляции, ORs активации сигнального каскада G αolf трансдукции, что приводит к образованию циклического АМФ (цАМФ) 12. К со-трансфекции светлячка репортерный ген люциферазы под контролем переменногоAMP элемент ответа (CRE), производство люциферазы может быть измерено как функция отклика запаха, что позволяет для количественной оценки или активации. ИЛИ активации также могут быть связаны с пути IP3 по коэкспрессирующей G-белки, такие как G α15/16 или G α15-олф химеры 24,25,34. Мы выбрали анализ представленные здесь на основе трех факторов: (1) коэкспрессией RTP1 с Ро-меченых обонятельных рецепторов повышает экспрессию обонятельных рецепторов на клеточной поверхности 19,27; (2) использование гена-репортера цАМФ аспекты позволяет для измерения или активации через канонической вторичного мессенджера пути; и (3) анализ хорошо подходит к экранам высокой пропускной.
Это высокой пропускной люциферазы анализ применим к различных исследований ценных в области обоняния. Во-первых, большое количество ORs могут быть подвергнуты скринингу против одного одоранта, чтобы определить шаблон активации рецептора для зрecific одоранта. Этот тип исследования определены OR7D4 как ИЛИ ответственность за ответы на стероидного одоранта андростенону 8. С другой стороны, один или могут быть подвергнуты скринингу против панели одорантов, чтобы определить профиль реакции рецепторов 10. Когда кандидат обонятельная одоранта / ИЛИ пары идентифицируются с помощью этих экранов, взаимодействие может быть подтверждена путем проведения реакции эксперимент дозы рассматривая реакцию или возрастающих концентраций одоранта. Кривые зависимости от дозы может также оценить, как генетические вариации в OR влияет в пробирке одоранта ответ 8,9,11,35, и эти исследования могут быть распространены на межвидовых или изменения, что позволяет для рассмотрения эволюции рецепторов у разных видов и причинных мутаций в эволюции 36,37, наконец, этот анализ может быть использован для скрининга антагонистов запаха, которые способны противодействовать или ответа на конкретный одоранта при известном одоранта / рецептора пары 38,39. Таким образом, этот высокийПропускной люциферазы анализа применима к целому ряду исследований, которые помогут охарактеризовать или шаблонов активации и обеспечивают лучшее понимание кодирования запахов в обонятельной системы.
Одорант идентичность кодируется обонятельных варианты активации рецептора, но модели активации рецепторов, в том числе, которые рецепторы активируются и в какой степени, известны меньше, чем 6% человеческих обонятельных рецепторов 1-11. Усилия, направленные на характеризуют обоня…
The authors have nothing to disclose.
Эта работа была поддержана R01 DC013339, R03 DC011373 и Рут Л. Kirschstein Национальный исследовательский Service Award T32 DC000014. Часть работ была выполнена с использованием Monell хемосенсорных рецептора Сигнализация Core, который поддерживается, в частности, путем финансирования из P30 DC011735 NIH-NIDCD Основной Грант. Авторы выражают благодарность С. Sezille за помощь в сборе данных.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Hana3A cells | Avaiable from the Matsunami Laboratory upon request | ||
RTP1S-pCI | Avaiable from the Matsunami Laboratory upon request | ||
M3-R-pCI | Avaiable from the Matsunami Laboratory upon request | ||
pCRE-luc | Agilent | 219076 | LUC |
pSV40-RL | Promega | E2231 | RL |
Minimum Essential Media, Eagle | Sigma Aldrich | M4655 | MEM |
FBS | Life Technologies | 16000-044 | FBS |
PBS (without Ca2+ and Mg2+) | Cellgro | 21-040-CV | PBS |
Trypsin (0.05% Trypsin EDTA) | Life Technologies | 25300 | Trypsin |
CD293 | Life Technologies | 11913-019 | CD293 |
96 well PDL white/clear plate | BD BioCoat | 356693 | plates |
Lipid transfection reagent: Lipofectamine 2000 | Life Technologies | 11668-019 | Lipofectamine |
Firefly luciferase substrate, firefly luciferase quencher/Renilla luciferase substrate: Dual-Glo Assay | Promega | E2980 | dual glo |
Synergy S2 | BioTek | SLAD | BioTek S2 |
Microplate reader software: Gen5 Data Analysis Software | BioTek | Gen5 | Gen5 |
BIOSTACK | BioTek | BIOSTACK2WR | BioStack |
Multiflo | BioTek | MFP | MultiFlo |
300ul GripTips | Integra | 4433 | GripTips |
12.5ul GripTips | Integra | 4414 | GripTips |
300ul GripTips ViaFlo96 | Integra | 6433 | XYZ tips |
12.5ul GripTips 384 XYZ | Integra | 6403 | XYZ tips |
384ViaFlo | Integra | 6030 | 384ViaFlo |
TE buffer | Macherey Nagel | 740797.1 | |
DMSO | Sigma Aldrich | D2650-100ML | DMSO |
forskolin | Enzo Life Sciences | BML-CN100-0010 | FOR |