Summary

Laboratorio Stima di Net trofiche trasferimento incrementi di efficienza di congeneri di PCB a Lake Trout (<em> Salvelinus namaycush</em>) Dalla sua preda

Published: August 29, 2014
doi:

Summary

Una tecnica per la stima laboratorio di rendimento netto trasferimento trofico dei bifenili policlorurati (PCB) congeneri di pesce piscivori dalla loro preda è presentato. Per massimizzare l'applicabilità dei risultati di laboratorio al campo, il pesce piscivori dovrebbe essere alimentato pesce preda che sono tipicamente consumati in campo.

Abstract

Una tecnica per la stima laboratorio di efficienza di rete trofica trasferimento (γ) dei bifenili policlorurati (PCB) congeneri di pesce piscivori dalla loro preda è qui descritta. Nel corso di un esperimento di laboratorio 135 giorni, ci siamo nutriti aringa (Coregonus hoyi), che era stato catturato nel lago Michigan a Trout Lake (Salvelinus namaycush) tenuti in otto serbatoi di laboratorio. Bloater è una preda naturale per la trota lago. In quattro dei serbatoi, una portata relativamente elevato è stato utilizzato per garantire relativamente elevata attività della trota di lago, mentre una bassa portata è stata utilizzata nelle altre quattro vasche, consentendo bassa attività trota di lago. Su una base serbatoio-by-tank, la quantità di cibo mangiato da trota lago ogni giorno dell'esperimento è stato registrato. Ogni trota di lago è stato pesato all'inizio e alla fine dell'esperimento. Quattro a nove trota lago da ciascuna delle otto serbatoi sono stati sacrificati all'inizio dell'esperimento, e tutti trota lago restante 10 in ciascuno dei serbatoi erano euthanzata alla fine dell'esperimento. Abbiamo determinato le concentrazioni di 75 congeneri di PCB nel trota lago all'inizio dell'esperimento, la trota lago alla fine dell'esperimento, e in bloaters nutriti alla trota lago durante l'esperimento. Sulla base di queste misurazioni, γ è stata calcolata per ciascuno dei 75 congeneri dei PCB in ciascuna delle otto serbatoi. Significa γ è stata calcolata per ciascuno dei 75 congeneri di PCB per trota di lago sia attiva che inattiva. Poiché l'esperimento è stato replicato in otto serbatoi, l'errore standard sulla media γ potrebbe essere stimato. I risultati di questo tipo di esperimento sono utili nei modelli di valutazione del rischio per predire il futuro rischio per l'uomo e la fauna selvatica che mangiano pesce contaminato sotto vari scenari di contaminazione ambientale.

Introduction

Of all of the factors affecting the rate at which fish accumulate contaminants, the efficiency with which fish retain contaminants from the food that they eat is one of the most important1-3. Risk assessment models have been developed to predict future risks to both people and wildlife eating contaminated fish under various scenarios of environmental contamination, and the reliability of these predictions critically depends on the accuracy of the estimates of the efficiency at which fish retain contaminants from their food4.

The efficiency with which the contaminant in the food ingested by the predator is transported through the gut wall is known as gross trophic transfer efficiency5. A portion of the quantity of the contaminant transported through the gut wall of the predator may eventually be lost through depuration and/or metabolic transformation. The efficiency with which the contaminant in the food ingested by the predator is retained by the predator, including any losses due to elimination and metabolic transformation, is known as net trophic transfer efficiency6.

Gross trophic transfer efficiency of organic contaminants to fish from their prey appears to vary with the contaminant’s chemical properties, including lipid affiliation as measured by the octanol-water partition coefficient, Kow3,7. According to an empirical relationship developed by Thomann3, gross trophic transfer efficiency is relatively high when log Kow is equal to a value between 5 and 6. Gross trophic transfer efficiency declines exponentially at a rate of 50% per unit of log Kow as log Kow increases from 6 to 10, according to the Thomann3 relationship.

Nevertheless, the gross and net trophic transfer efficiencies of polychlorinated biphenyl (PCB) congeners to fish from their prey do not appear to follow the Thomann3 relationship in most cases. Although the trophic transfer efficiencies of PCB congeners to lake whitefish (Coregonus clupeaformis) from its food followed the relationship proposed by Thomann8, trophic transfer efficiencies of PCB congeners were either just weakly related or not related at all to log Kow for Atlantic salmon (Salmo salar)9, rainbow trout (Oncorhynchus mykiss)10, coho salmon (Oncorhynchus kisutch)11, and northern pike (Esox lucius)11.

The overall goal of this study was to present a laboratory technique for estimating the net trophic transfer efficiencies of PCB congeners to a piscivorous fish from its prey. Lake trout (Salvelinus namaycush) was chosen as the piscivorous fish for our experiment because lake trout are relatively easy to maintain in laboratory tanks. Bloater (Coregonus hoyi) was selected as the prey fish to be fed to the lake trout because bloater is eaten by lake trout in its natural setting12. In addition, we determined whether the net trophic transfer efficiencies for lake trout estimated from our laboratory experiment followed the Thomann3 relationship. We also determined whether the degree of activity by the lake trout had a significant effect on net trophic transfer efficiency (γ) of the PCB congeners. Activity by lake trout in the Laurentian Great Lakes is believed to have recently increased because changes in the food webs have caused lake trout to allocate more energy toward searching for food13. Lake trout were forced to exercise in one set of tanks by subjecting these lake trout to relatively high flow rates, whereas the other lake trout were permitted to remain relatively inactive by subjecting them to relatively low flow rates. Finally, the specific details of our laboratory procedure that need to be carefully followed to ensure the highest degree of accuracy in the γ estimates and to make the laboratory results applicable to the field are discussed, as well as future directions for research building on our laboratory technique. Net trophic transfer efficiency can be estimated both in the laboratory and in the field, and advantages and disadvantages are associated with both approaches. Accuracy in the estimate of γ depends on the accuracy of the estimate of food consumption. The amount of food eaten by fish in the laboratory can be accurately determined when proper protocols are followed, whereas the amount of food eaten by fish in the field is typically estimated via bioenergetics modeling. Use of bioenergetics modeling to derive the amount of food eaten has the potential to introduce a substantial amount of uncertainty into the estimates of food consumption. Fish bioenergetics models have been shown to estimate food consumption with no detectable bias for the case of lake trout14,15, but considerable bias in bioenergetics model estimates of food consumption has been detected for the case of lake whitefish15,16. On the other hand, estimates of net trophic transfer efficiency estimated in the laboratory may not be applicable to the field due to a difference in feeding rates between the laboratory and the field17. Evidence from both the laboratory and the field suggest that feeding rate can influence γ14,17.

The methodology used in the present study for estimating γ in the laboratory is applicable to situations where the predator fish is fed prey fish, and the amount of prey fish eaten by the predator can be accurately tracked. To accomplish this, the experimenter must weigh all of the food before placement in the tank; and the experimenter must be able to remove all of the uneaten food from the tank, and then weigh the uneaten food. In addition, an adequate suite of mixers and blenders should be available to obtain a sufficient degree of homogenization of the samples of both predator and prey fish. Finally, the gas chromatography – mass spectrometry instrumentation used to determine the PCB congener concentrations must be capable of detecting and quantifying individual PCB congeners at relatively low concentrations.

Protocol

1 Provette Ottenere il pesce preda da alimentare per il pesce predatore durante l'esperimento. Preferibilmente questi pesci preda dovrebbero essere acquisite in campo, congelati e conservati a circa -30 ° C. Considerate le operazioni di pesca commerciale come fonte potenziale per il pesce preda. Introdurre il pesce predatore nei serbatoi di laboratorio da utilizzare per l'esperimento. Fino al 15 predatore pesci sono stati introdotti in ciascuna delle vasche 870-L, e fino a 30 predatore pesc…

Representative Results

Trout Lake ha mostrato una notevole quantità di crescita durante l'esperimento, come la trota lago iniziali significano pesi variava 694-907 g, mentre le trote lacustri finali il peso medio variava da 853 a 1566 g (Tabella 1). La quantità media di cibo consumato da una trota lago durante il corso dell'esperimento 135 giorni variava da 641 a 2.649 g. Concentrazioni di PCB congeneri media nella trota lago aumentato durante l'esperimento, le concentrazioni di congeneri PCB media variava 0,01-…

Discussion

Per le stime più accurate di γ, lo sperimentatore deve essere in grado di monitorare con precisione sia la quantità di cibo posto in ciascuno dei serbatoi e la quantità di resti di cibo in ciascuno dei serbatoi durante il corso dell'esperimento. Per fare questo, lo sperimentatore deve essere in grado di rimuovere tutto il cibo non consumato dai serbatoi e determinare con precisione il suo peso. Oltre al monitoraggio accurato del cibo effettivamente consumato dai pesci predatori, stima accurata di γ può dipende…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was funded, in part, by the Great Lakes Fishery Commission and the Annis Water Resources Institute. Use of trade, product, or firm names does not imply endorsement by the U. S. Government. This article is Contribution 1867 of the U. S. Geological Survey Great Lakes Science Center.

Materials

Name  Company Catalog Number Comments
870-L fiberglass tanks Frigid Units RT-430-1
2,380-L fiberglass tanks Frigid Units RT-630-1
Tricaine methanesulfonate (Finquel) Argent Chemical Laboratories, Inc. C-FINQ-UE-100G Eugenol could also be used as an anesthetic.
Ashland chef knife Chicago Cutlery SKU 1106336
Cutting board Williams-Sonoma 3863586
Hobart verical mixer (40 quart) Hobart Corporation
1.9-L food processor Robot Coupe, Inc. RSI 2Y1 
Polyethylene bags (various sizes) Arcan Inc.
I-Chem jars I-Chem 220-0125
Top-load electronic balance Mettler Toledo Mettler PM 6000 
Sodium sulfate, anhydrous – granular EMD SX0760E-3
Glass extraction thimbles (45 mm x 130 mm) Wilmad-Lab Glass LG-7070-114
Teflon boiling chips Chemware 919120
Rapid Vap nitrogen sample concentrator Labconco 7910000
N-Vap nitrogen concentrator Organomation 112
Soxhlet extraction glassware (500 mL) Wilmad-Lab Glass  LG-6900-104
Hexane Burdick & Jackson  Cat. 211-4
Dichloromethane Burdick & Jackson  Cat. 300-4
Silica gel BDH Cat. BDH9004-1KG
Labl Line 5000 mult-unit extraction heater Lab Line Instruments
Agilent 5973 GC/MS with chemical ionization Agilent 5973N
Internal standard solution  Cambridge Isotope Laboratories EC-1410-1.2
PCB congener calibration standards Accustandard C-CSQ-SET
DB-XLB column (60m x 0.25mm, 0.25 micron) Agilent/ J&W 122-1262

Referencias

  1. Madenjian, C. P., Carpenter, S. R., Rand, P. S. Why are the PCB concentrations of salmonine individuals from the same lake so highly variable?. Canadian Journal of Fisheries and Aquatic Sciences. 51 (4), 800-807 (1994).
  2. Madenjian, C. P., et al. Net trophic transfer efficiency of PCBs to Lake Michigan coho salmon from their prey. Environmental Science and Technology. 32 (20), 3063-3067 (1998).
  3. Thomann, R. V. Bioaccumulation model of organic chemical distribution in aquatic food chains. Environmental Science and Technology. 23 (6), 699-707 (1989).
  4. Calabrese, E. J., Baldwin, L. A. . Performing ecological risk assessments. , (1993).
  5. Madenjian, C. P., et al. Variation in net trophic transfer efficiencies among 21 PCB congeners. Environmental Science and Technology. 33 (21), 3768-3773 (1999).
  6. Jackson, L. J., Schindler, D. E. Field estimates of net trophic transfer of PCBs from prey fishes to Lake Michigan salmonids. Environmental Science and Technology. 30 (6), 1861-1865 (1996).
  7. Gobas, F. A. P. C., Muir, D. C. G., Mackay, D. Dynamics of dietary bioaccumulation and faecal elimination of hydrophobic organic chemicals in fish. Chemosphere. 17 (5), 943-962 (1988).
  8. Madenjian, C. P., O’Connor, D. V., Rediske, R. R., O’Keefe, J. P., Pothoven, S. A. Net trophic transfer efficiencies of polychlorinated biphenyl congeners to lake whitefish (Coregonus clupeaformis) from their food. Environmental Toxicology and Chemistry. 27 (3), 631-636 (2008).
  9. Isosaarl, P., Kiviranta, H., Lie, &. #. 2. 1. 6. ;., Lundebye, A. K., Ritchie, G., Vartiainen, T. Accumulation and distribution of polychlorinated dibenzo-p-dioxin, dibenzofuran, and polychlorinated biphenyl congeners in Atlantic salmon (Salmo salar). Environmental Toxicology and Chemistry. 23 (7), 1672-1679 (2004).
  10. Buckman, A. H., Brown, S. B., Hoekstra, P. F., Solomon, K. R., Fisk, A. T. Toxicokinetics of three polychlorinated biphenyl technical mixtures in rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry. 23 (7), 1725-1736 (2004).
  11. Burreau, S., Axelman, J., Broman, D., Jakobsson, E. Dietary uptake in pike (Esox lucius) of some polychlorinated biphenyls, polychlorinated naphthalenes and polybrominated diphenyl ethers administered in natural diet. Environmental Toxicology and Chemistry. 16 (12), 2508-2513 (1997).
  12. Madenjian, C. P., DeSorcie, T. J., Stedman, R. M. Ontogenic and spatial patterns in diet and growth of lake trout in Lake Michigan. Transactions of the American Fisheries Society. 127 (2), 236-252 (1998).
  13. Paterson, G., Whittle, D. M., Drouillard, K. G., Haffner, G. D. Declining lake trout (Salvelinus namaycush) energy density: are there too many salmonid predators in the Great Lakes?. Canadian Journal of Fisheries and Aquatic Sciences. 66 (6), 919-932 (2009).
  14. Madenjian, C. P., O’Connor, D. V., Nortrup, D. A. A new approach toward evaluation of fish bioenergetics models. Canadian Journal of Fisheries and Aquatic Sciences. 57 (5), 1025-1032 (2000).
  15. Madenjian, C. P., Pothoven, S. A., Kao, Y. C. Reevaluation of lake trout and lake whitefish bioenergetics models. Journal of Great Lakes Research. 39 (2), 358-364 (2013).
  16. Madenjian, C. P., et al. Evaluation of a lake whitefish bioenergetics model. Transactions of the American Fisheries Society. 135 (1), 61-75 (2006).
  17. Madenjian, C. P., O’Connor, D. V., Chernyak, S. M., Rediske, R. R., O’Keefe, J. P. Evaluation of a chinook salmon (Oncorhynchus tshawytscha) bioenergetics model. Canadian Journal of Fisheries and Aquatic Sciences. 61 (4), 627-635 (2004).
  18. Madenjian, C. P., David, S. R., Rediske, R. R., O’Keefe, J. P. Net trophic transfer efficiencies of polychlorinated biphenyl congeners to lake trout (Salvelinus namaycush) from its prey. Environmental Toxicology and Chemistry. 31 (12), 2821-2827 (2012).
  19. Madenjian, C. P., O’Connor, D. V. Laboratory evaluation of a lake trout bioenergetics model. Transactions of the American Fisheries Society. 128 (5), 802-814 (1999).
  20. Ballschmiter, K., Bacher, R., Mennel, A., Fischer, R., Riehle, U., Swerev, M. The determination of chlorinated biphenyls, chlorinated dibenzodioxins, and chlorinated dibenzofurans by GC-MS. HRC Journal of High Resolution Chromatography. 15 (4), 260-270 (1992).
  21. Madenjian, C. P., David, S. R., Pothoven, S. A. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model. Transactions of the American Fisheries Society. 141 (5), 1328-1337 (2012).
  22. Lieb, A. J., Bills, D. D., Sinnhuber, R. O. Accumulation of dietary polychlorinated biphenyls (Aroclor 1254) by rainbow trout. Journal of Agricultural and Food Chemistry. 22 (4), 638-642 (1974).
  23. Niimi, A. J., Oliver, B. G. Biological half-lives of polychlorinated biphenyl (PCB) congeners in whole fish and muscle of rainbow trout (Salmo gairdneri). Canadian Journal of Fisheries and Aquatic Sciences. 40 (9), 1388-1394 (1983).
  24. Gobas, F. A. P. C., Wilcockson, J. B., Russell, R. W., Haffner, G. D. Mechanism of biomagnification in fish under laboratory and field conditions. Environmental Science and Technology. 33 (1), 133-141 (1999).
  25. Dmitrovic, J., Chan, S. C. Determination of polychlorinated biphenyl congeners in human milk by gas chromatography – negative chemical ionization mass spectrometry after sample clean-up by solid-phase extraction. Journal of Chromatography B. 778 (1-2), 147-155 (2002).
  26. Zorn, M. E., Gibbons, R. D., Sonzogni, W. C. Weighted least-squares approach to calculating limits of detection and quantification by modeling variability as a function of concentration. Analytical Chemistry. 69 (15), 3069-3075 (1997).

Play Video

Citar este artículo
Madenjian, C. P., Rediske, R. R., O’Keefe, J. P., David, S. R. Laboratory Estimation of Net Trophic Transfer Efficiencies of PCB Congeners to Lake Trout (Salvelinus namaycush) from Its Prey. J. Vis. Exp. (90), e51496, doi:10.3791/51496 (2014).

View Video