Peptid tertiäre Amide (PTA) sind eine Superfamilie von Peptidmimetika umfassen, sind aber nicht auf Peptide, Peptoide und N-methylierten Peptide beschränkt. Hier beschreiben wir eine Synthesemethode, die sowohl Split-and-Pool-und Sub-Monomer-Strategien kombiniert, um eine ein-Bead-one-Verbindung Bibliothek von PTAs synthetisieren.
Peptidmimetica sind große Quellen von Protein-Liganden. Die oligomeren Natur dieser Verbindungen ermöglicht uns, große Kunstbibliotheken an fester Phase mit Hilfe kombinatorischen Chemie zugreifen. Eine der am besten untersuchten Klassen von Peptidomimetics ist Peptoiden. Peptoide sind leicht zu synthetisieren und haben gezeigt, dass die Proteolyse fest und zelldurchlässig sein. Im Laufe des letzten Jahrzehnts haben viele nützliche Protein-Liganden durch Screening von Peptoids Bibliotheken identifiziert worden. Allerdings sind die meisten der von Peptoids Bibliotheken identifizierten Liganden mit hoher Affinität nicht angezeigt werden, mit wenigen Ausnahmen. Dies kann daran liegen, zum Teil auf den Mangel an chirale Zentren und Konformationseinschränkungen in Peptoid-Molekülen. Kürzlich haben wir einen neuen Syntheseweg zu Peptid tertiäre Amide (PTA) zugreifen. PTA sind eine Superfamilie von Peptidmimetika umfassen, sind aber nicht auf Peptide, Peptoide und N-methylierten Peptide beschränkt. Mit Seitenketten sowohl α-Kohlenstoff-Hauptkette Stickstoffatome enthält,die Konformation dieser Moleküle stark durch sterische Hinderung und allylische 1,3-Stamm beschränkt. (Fig. 1) Unsere Studie legt nahe, dass diese PTA-Moleküle in Lösung stark strukturiert und kann verwendet werden, um Protein-Liganden zu identifizieren. Wir glauben, dass diese Moleküle eine zukünftige Quelle von hochaffinen Proteinliganden sein. Hier beschreiben wir die Synthesemethode die Kombination der Leistung der beiden Split-and-Pool-und Sub-Monomer-Strategien, um eine Probe einer Perlen ein-Verbindung (OBOC) Bibliothek der PTAs synthetisieren.
Peptidmimetika sind Verbindungen, die die Struktur von natürlichen Peptiden nachzuahmen. Sie sind für die biologische Aktivität behalten, während Überwindung einiger der Probleme mit natürlichen Peptiden, einschließlich der Zelldurchlässigkeit und Beständigkeit gegen Proteolyse 1-3 verbunden. Aufgrund der Natur dieser oligomeren Verbindungen können große Bibliotheken leicht durch synthetische monomere oder Unter monomeren Synthesewege 4-7 zugegriffen werden. Eine der am besten untersuchten Klassen von Peptidomimetics ist Peptoiden. Peptoide sind Oligomere von N-alkylierten Glycine, die leicht mit einer Unter Monomer-Strategie 8, 9 synthetisiert werden können. Viele nützliche Protein-Liganden wurden erfolgreich von Screening großer Bibliotheken synthetischer Peptoids gegen Protein-Targets 1, 10-14 identifiziert. Dennoch, "Hits" aus Peptoids Bibliotheken identifiziert archivieren selten sehr hohe Affinität zu Protein-Targets 1,10-14,22. Ein major Differenz zwischen Peptoide und natürliche Peptide ist, dass die meisten der Peptoide allgemeinen nicht die Fähigkeit, Sekundärstruktur aufgrund des Mangels an chirale Zentren und Konformationseinschränkungen bilden. Um dieses Problem zu lösen, wurden mehrere Strategien in den letzten zehn Jahren entwickelt, die sich stark auf die Änderung der in der Hauptkette Stickstoffatome enthalten 15-22 Seitenketten. Kürzlich haben wir einen neuen Syntheseweg für natürliche Aminosäureseitenketten an einer Peptoid-Hauptkette einzuführen, um Peptid tertiäre Amide 23 zu schaffen entwickelt.
Peptid tertiäre Amide (PTA) sind eine Superfamilie von Peptidmimetika umfassen, sind aber nicht auf Peptide (R 2 = H), Peptoide (R 1 = H) und N-methylierten Peptide beschränkt (R 1 ≠ H, R 2 = Me) . (Siehe Fig. 1) Die Syntheseroute beschäftigt natürlich vorkommenden Aminosäuren als Quelle der Chiralität und Seitenketten an die45;-Kohlenstoff, und im Handel erhältlich primären Aminen zu N-Substitutionen bereitzustellen. Daher kann eine größere chemische Raum als der einfache Peptide, Peptoide oder N-methylierten Peptide untersucht werden. CD-Spektren haben gezeigt, dass PTA-Moleküle in Lösung sehr strukturiert. Charakterisierung eines der PTA-Protein-Komplexen zeigt deutlich, dass die Konformationseinschränkungen PTA zur Bindung erforderlich ist. Kürzlich haben wir auch entdeckt, dass einige der PTA-Moleküle besitzen eine verbesserte Zelldurchlässigkeit als ihre Gegenstücke und Peptid-Peptoid. Wir glauben, dass diese PTA-Bibliotheken können eine gute Quelle für hochaffine Liganden für Zielproteine sein. In diesem Papier werden wir die Synthese einer Probe ein-Bead-one-Verbindung (OBOC) PTA-Bibliothek in Details zusammen mit einigen verbesserten Bedingungen für die Kupplung und die Spaltung dieser Verbindungen zu diskutieren.
Peptide tertiäre Amide (PTA) sind eine Superfamilie von Peptidomimetikum Oligomere. Neben den gut untersuchten Peptide, Peptoide und N-methylierten Peptide, bleibt ein großer Teil der Verbindungen innerhalb dieser Familie under, majorly aufgrund des Fehlens von Syntheseverfahren, allgemeine N-alkylierte Peptide zuzugreifen. Hier beschreiben wir eine effiziente Methode, um PTAs mit chiraler Bausteine von Aminosäuren abgeleitete synthetisieren. Zuvor haben wir berichtet, dass eine neue Unter Monomer Syntheseroute…
The authors have nothing to disclose.
Die Autoren danken Herrn Dr. Jumpei Morimoto und Dr. Todd Doran für wertvolle Unterstützung danken. Diese Arbeit wurde durch einen Vertrag von der NHLBI (NO1-HV-00242) unterstützt.
2,4,6 trimethylpyridine | ACROS | 161950010 | CAS:108-75-8 |
2-morpholinoethanamine | Sigma-Aldrich | 06680 | CAS:2038-03-1 |
48% HBr Water solution | ALFA AESAR | AA14036AT | CAS:10035-10-6 |
Acetaldehyde | Sigma-Aldrich | 402788 | CAS:75-07-0 |
Acetonitrile | Fisher | SR015AA-19PS | CAS:75-05-8 |
Anhydrous Tetrahydrofuran (THF) | EMD | EM-TX0277-6 | CAS:109-99-9 |
Benzylamine | Sigma-Aldrich | 185701 | CAS:100-46-9 |
bis(trichloromethyl) carbonate (BTC) | ACROS | 258950050 | CAS:32315-10-9 |
Bromoacetic acid | ACROS | 106570010 | CAS:79-08-3 |
Chloranil | Sigma-Aldrich | 23290 | CAS:118-75-2 |
Cyclohexanemethylamine | Sigma-Aldrich | 101842 | CAS:3218-02-8 |
D2O | Cambridge Isotope | DLM-4-99.8-1000 | CAS:7789-20-0 |
D-alanine | Anaspec | 61387-100 | CAS:338-69-2 |
Dichloromethane (DCM) | Fisher | BJ-NS300-20 | CAS:75-09-2 |
Dimethylformamide (DMF) | Fisher | BJ-076-4 | CAS:68-12-2 |
Ethylene glycol | Oakwood | 44710 | CAS:107-21-1 |
Isopentylamine | Sigma-Aldrich | W321907 | CAS:107-85-7 |
KBr | ACROS | 424070025 | CAS:7758-02-3 |
L-alanine | Anaspec | 61385-100 | CAS:56-41-7 |
3-Methoxypropylamine | Sigma-Aldrich | M25007 | CAS:5332-73-0 |
2-Methoxyethylamine | Sigma-Aldrich | 143693 | CAS:109-85-3 |
N-(3-Aminopropyl)-2-pyrrolidinone | Sigma-Aldrich | 136565 | CAS:7663-77-6 |
N,N'-Diisopropylcarbodiimide (DIC) | ACROS | 115211000 | CAS:693-13-0 |
N,N-Diisopropylethylamine (DIPEA) | Sigma-Aldrich | D125806 | CAS:7087-68-5 |
NaNO2 | ACROS | 424340010 | CAS:7631-99-4 |
NAOD 40% solution in water | ACROS | 200058-506 | CAS:7732-18-5 |
Piperidine | ALFA AESAR | A12442-AE | CAS:110-89-4 |
Piperonylamine | Sigma-Aldrich | P49503 | CAS:2620-50-0 |
Propylamine | Sigma-Aldrich | 240958 | CAS:107-10-8 |
Trifluoroacetic acid | Sigma-Aldrich | 299537 | CAS:76-05-1 |
α-Cyano-4-hydroxycinnamic acid | Sigma-Aldrich | 39468 | CAS:28166-41-8 |
α-ketoglutarate | ALFA AESAR | AAA10256-22 | CAS:328-50-7 |
Tentagel Resin with RINK linker | Rapp-Polymere | S30023 | |
Alanine transaminase | Roche | 10105589001 | AKA: Glutamate-Pyruvate Transaminase (GPT) |
Incubator | New Brunswick Scientific | Innova44 | |
NMR | Bruker | 400MHz | |
MALDI mass spectrometer | Applied Biosystems | 4800 MALDI-TOF/TOF | |
Lyophilizer | SP Scientific | VirTis benchtop K | |
Syringe reactor | INTAVIS | Reaction Column | 3ml, 5ml, 10ml, 20ml |
Vacuum manifold | Promega | A7231 | Vac-Man |