Нейробласта миграция является важным шагом в послеродовой нейрогенеза. Протокол, описанный здесь, может использоваться, чтобы исследовать роль регуляторов кандидатов нейробласта миграции, используя ДНК / маленький шпильки РНК (shRNA) nucleofection и 3D миграции анализа с нейробластах выделенных из грызунов послеродовой ростральной миграционного потока.
Субвентрикулярной зоне (СВЗ), расположенный в боковой стенке боковых желудочков играет фундаментальную роль во взрослом нейрогенеза. В этом ограниченном участке мозга, нервные стволовые клетки размножаются и постоянно генерировать нейробласты, которые мигрируют по касательной в цепях по ростральной миграционного потока (RMS), чтобы достичь обонятельной луковицы (OB). После того как в OB, нейробласты переключиться на радиальной миграции, а затем дифференцируются в зрелые нейроны в состоянии включить в существовавшие ранее нейронной сети. Правильное миграция нейробластов является фундаментальным шагом в нейрогенеза, обеспечения правильного функционального созревания новорожденных нейронов. Учитывая способность СВЗ-производных нейробластах целевой раненых области в мозге, исследуя внутриклеточные механизмы, лежащие их подвижность не только улучшить понимание нейрогенеза но может также способствовать развитию neuroregenerative стратегий.
Эта рукопись описывает подробныйпротокол для трансфекции первичных грызуна RMS послеродовые нейробласты и анализ их подвижности с помощью 3D в пробирке миграции анализа Резюмируя свой способ миграции наблюдается в естественных условиях. Обе крысы и мыши нейробласты может быть быстро и эффективно трансфицируют с помощью nucleofection либо с плазмидной ДНК, небольшой шпильки (SH) РНК или короткое вмешательства (SI) РНК олигонуклеотиды ориентации представляющих интерес генов. Для анализа миграции, nucleofected клетки reaggregated в «висячей капли», а затем вложить в трехмерной матрице. Nucleofection по себе существенно не нарушает миграцию нейробластов. Фармакологическое лечение nucleofected и reaggregated нейробластах также может быть выполнена в изучение роли путей, вовлеченных в нейробласта миграции сигнализации.
В послеродовом млекопитающих мозга, генерации новых нейронов (нейрогенез) происходит в течение всей жизни и ограничивается двумя нейрогенных ниш: субвентрикулярной зоне (СВЗ) боковых желудочков и зернистым зоне зубчатой извилины гиппокампа 1. Несколько недавних исследований показали важную роль взрослого нейрогенеза в содействии обучения и памяти задачи 2,3. Кроме того, свидетельством распространения и вербовки нейронных клеток-предшественников следующих травму головного мозга 4-7 поднимает возможность фармакологической активации нейрогенеза в нервной ремонта.
Послеродовая нейрогенез строго регулируется на всех его этапах, в том числе нервной пролиферацию предшественников, миграцию, дифференцировку, выживание, и окончательный синаптической интеграции новорожденных нейронов 8. Нервные клетки-предшественники (нейробласты), полученные из стволовых клеток в СВЗ мигрировать на большое расстояние через ростральной миграционныхпоток (RMS) к обонятельной луковице (OB), где они созревают в функциональные нейроны 9. Миграционные нейробласты преимущественно однополярный, с удлиненным телом клетки, проходящей один из ведущих процесс. Эти клетки перемещаются в цепях в коллективном порядке, скользя по одной другой 10. Миграция является важным шагом для последующего созревания СВЗ-производных предшественников на функциональные нейроны 11 и управляется несколькими факторами и молекул наведения включая: Полисиалилированный нейронной молекулы клеточной адгезии (PSA-NCAM) 12, Ephrins 13, Интегрины 14, Разрезы 15, факторы роста 16 и нейротрансмиттеров 17, однако молекулярные механизмы, лежащие в основе этого процесса полностью не поняты. Исследуя внутриклеточные сигнальные пути, регулирующие нейробластов миграции не только обеспечит лучшее понимание взрослого нейрогенеза, но и будет способствовать развитию нового терапевтическогоподходы, позволяющие развивать ремонт мозга.
Эта рукопись описывает подробный протокол для изучения роли регуляторов кандидатов нейробласта миграции в пробирке с использованием nucleofection и 3D миграции анализа. Nucleofection представляет собой метод трансфекции клеток на основе усовершенствованного метода электропорации. Сотового типа конкретных электрический ток и nucleofection решение позволит передача полианионных макромолекул, таких как ДНК и shRNA векторов и миРНК олигонуклеотидов непосредственно в ядро клетки и разрешения трансфекции медленно деления или митотически неактивные клетки, как эмбриональных и млекопитающих нейроны 18. Это быстрый, относительно легко выполнить и приводит к высокой воспроизводимостью трансфекции широкого диапазона типов клеток, включая первичные нейробластов и нейронов 19-21.
Диссоциация RMS ткани позволяет изолировать мигрирующих нейробластов, который может быть успешно nucleofected с ДНК / SHRН.А. векторы или миРНК олигонуклеотиды ориентации интерес гены. После nucleofection, нейробласты reaggregated в висячей капли, а затем вложить в трехмерном Matrigel матрицы. Эти условия позволяют нейробласты мигрировать из клеточных агрегатов Резюмируя режим миграции наблюдается в естественных условиях, обеспечивая тем самым отличную модельную систему для расследования сигнальных путей, участвующих в нейробласта миграции и оценить влияние фармакологических методов лечения на подвижности этих клеток.
Миграция нейробластах вдоль RMS до конечного месте в OB является фундаментальным шагом в послеродовой нейрогенеза. Однако молекулярные механизмы, контролирующие этот сложный процесс еще далеко не полностью изучены.
Экспериментальная процедура, описанная здесь позволяет изучать нейробласта миграции в пробирке. Мы адаптировали ранее опубликованный протокол для выделения RMS нейробласты с раннего послеродового мыши или крысы 25. Для достижения оптимальных результатов важно освоить шаг рассечение, так как очень важно, чтобы держать интервал времени между рассечения и nucleofection к минимуму. После nucleofection, нейробласты можно reaggregated, встроенные в трехмерной матрице и оставил мигрировать над часами период 24. Кроме того, в целях, отличных миграции (например иммунофлюоресценции или вестерн-блот анализ) целей, клетки могут быть немедленно покрытием после nucleofection на polyornithine/laminin-покрытием покровные, где они выживают до 4-5 дней. Мыши и крысы нейробласты мигрировать в Матригель в такой же степени, однако клетки мыши, кажется, есть более сильное тенденцию мигрировать в цепях, чем крысы клеток.
В зависимости от цели исследования, нейробласты можно nucleofected с различными плазмид, кодирующих флуоресцентные белки или дикого типа / мутантных белков, представляющих интерес. Для получения оптимальных плазмид экспрессии белка с CAG промоутер (β-актин промотора с ЦМВ усилитель и β-глобина поли-хвост) 26 рекомендуется. Кроме того, миРНК олигонуклеотиды или shRNA плазмиды могут быть nucleofected в нокдаун целей, представляющих интерес. Эффективное истощение белок могут быть визуализированы с помощью иммунофлуоресценции или помощью вестерн-блоттинга (обычно лизиса встроенные агрегаты от 1 крысы щенка с 50 мкл стандартного буфера для лизиса).
Nucleofection является относительно простой метод для трансфекции первичных нейробласты, предлагает более простой и быстрой альтернативой VIRAL вектор-опосредованной трансфекции, и может достичь высокого (~ 70-80%) эффективность трансфекции. Очень важно работать быстро во время процедуры nucleofection, после ухода нейробласты в nucleofection решения в течение длительного времени резко снижает жизнеспособность клеток.
Средняя урожайность клеток от RMS вскрытия является относительно низким для мышей P7 (~ 5 х 10 5 клеток / мозга) по сравнению с P7 крыс (~ 1 х 10 6 клеток / мозг) и не менее 3 х 10 6 клеток на nucleofection требуются для достижения трансфекции с ~ эффективности 50%. Кроме того, крысы нейробласты появляются противостоять лучше nucleofection сравнению с нейробластах мыши. Таким образом, ранняя послеродовая (P6-P7) крысят может представлять удобный источник нейробластов, также учитывая, что организация крыс и мышей RMS удивительно СимиЛар 27 и что степень крысы и мыши нейробласта миграции в пробирке также сопоставимы. Желательно не держать reaggregated кластеры nucleofected нейробластах в виде суспензии в течение более 48 часов, чтобы исключить возникновение излишних воздействие на морфологию клеток и миграции (наши неопубликованные данные).
3D анализа, описанного здесь, могут использоваться для количественного нейробластов миграции в фиксированной точке времени после погружения в матрице (например. 24 ч). Агрегаты разных размеров могут быть использованы при анализе, так как нет существенной корреляции между размером агрегатов и расстояния миграции (наши неопубликованные данные). Для визуализации и далее исследовать динамику нейробласта миграции, покадровой обработки изображений могут быть использованы. Рекомендуется проводить анализ миграции в 24 час интервала после встраивания, так как скорость нейробластах появляется, что значительно снижает при более длительных (наши неопубликованные наблюдения). </ Р>
Есть некоторые ограничения в этом протоколе. Во-первых, nucleofection сих пор могут быть использованы для раннего постнатального нейробластах грызунов, в то время как инфекция с вирусными векторами остается наиболее эффективным методом трансфекции для взрослых нейробластах 28. Во-вторых, в пробирке миграции анализ не в полной мере воспроизвести сложную архитектуру RMS, наблюдаемых в естественных условиях. Действительно, хотя нейробласты поддерживать способность мигрировать в аналогии с их партнерами в естественных условиях, в экспериментальной установке, описанной здесь им не хватает взаимодействия с другими компонентами, такими как RMS астроцитов и кровеносных сосудов, которые также способствуют регулировать свою подвижность 9,29, 30. Этот вопрос может быть решен в будущем путем оптимизации трехмерных сокультивирования модельных системах.
В заключение, сочетая nucleofection с 3D анализа миграции представляет собой ценный инструмент, чтобы лучше понять молекулярные механизмы, лежащие в основенейробластов миграции. Это экспериментальная процедура обеспечивает начальный, быстрый и относительно простой способ оценить роль регуляторов кандидатов нейробласта миграции, которые могут быть дополнительно подтверждена другими подходами, как в естественных условиях послеродового электропорации и покадровой визуализации мозга срез культуры 28,31,32 .
The authors have nothing to disclose.
Эта работа финансировалась по Wellcome Trust Project гранта, предоставленного для ПД и GL (089236/Z/09/Z). С.Г. поддержали биотехнологии и биологических наук Исследовательского Совета PhD студенчества. Мы благодарим Матье Vermeren за любезное дар вектора shRNA и Дженнифер Shieh за ценные советы по нейробласта nucleofection.
Hank’s Balanced Salt Solution (HBSS) | Invitrogen Life Technologies | 14175129 | |
HEPES | Sigma-Aldrich | H3375-25G | |
Penicillin-Streptomycin | Invitrogen Life Technologies | 15140-122 | |
2.5% Trypsin-EDTA (10x) | Gibco | 15090-046 | store 200 µl aliquots at -20 °C |
DNAse I Vial (D2) | Worthington | LK003170 | ≥1,000 units per vial; store 50 µl aliquots at -20 °C |
Dulbecco Modified Eagle's Medium (DMEM) | Gibco | 11960-044 | |
Fetal Calf Serum (FCS) | Hyclone | SH3007902 | |
Neurobasal medium | Gibco | 21103-049 | |
B27 supplement | Invitrogen Life Technologies | 17504044 | |
L-Glutamine (200 mM) | Invitrogen Life Technologies | 25030-081 | |
D-(+)-Glucose solution (45%) | Sigma-Aldrich | G8769 | |
Matrigel Basement Membrane Matrix, Growth Factor Reduced (GFR), Phenol Red-free, 10 ml, LDEV-Free | BD Biosciences | 356231 | prepare 120 µl aliquots at 4 °C, then store at -80 °C |
PFA | Sigma-Aldrich | 441242 | |
Sucrose | BDH | 102745C | |
Goat serum | Sigma-Aldrich | 69023 | |
Triton X-100 | VWR International Ltd. | 306324N | |
BSA | Fisher Chemical | BPE9701-100 | |
Dako fluorescence mounting medium | Dako | S3023 | |
Rat neuron nucleofection kit | Lonza | VPG-1003 | |
Mouse neuron nucleofection kit | Lonza | VPG-1001 | |
Microsurgical knife | Angiotech | 7516 | |
McIlwain tissue chopper | The Mickle Laboratory Engineering Company | ||
Nucleofector II | Lonza |