LIBS возможности обнаружения на почвенных имитаторов были испытаны с использованием ряда энергию импульса и временных параметров. Калибровочные кривые были использованы для определения пределов обнаружения и чувствительности для различных параметров. Как правило, результаты показали, что не было значительное сокращение возможностей обнаружения, используя более низкие энергии импульса и не-закрытый обнаружения.
Зависимость некоторых возможностей обнаружения LIBS на более низких энергиях импульсов (<100 мДж) и временных параметров были рассмотрены с использованием синтетических образцов силикатных. Эти образцы были использованы в качестве имитаторов для почвы и содержал незначительные и микроэлементы обычно встречаются в почве в широком диапазоне концентраций. Для этого исследования, более 100 калибровочные кривые были получены с использованием различных энергию импульса и временные параметры; пределы обнаружения и чувствительности определялись из калибровочных кривых. Температура плазмы также измеряется с помощью Больцмана участков для различных энергий и временных параметров испытания. Электронная плотность плазмы была рассчитана с использованием полной ширины половину максимума (FWHM) линии водорода при 656,5 нм в течение энергий протестированных. В целом, результаты показывают, что использование более низких энергий импульсов и не-закрытом обнаружения не серьезную угрозу аналитические результаты. Эти результаты имеют очень важное значение в проектировании поле-и человек-портативный LIBS инструменты.
Лазер-пробой спектроскопии (LIBS) является простой метод элементного анализа, который использует лазерный генерируемые искру в качестве источника возбуждения. Лазерный импульс фокусируется на поверхности, который нагревает, ablates, распыляет и ионизирует поверхности материала, что приводит к образованию плазмы. Плазма света спектрально решен, и обнаружено и элементы обозначены их спектральных сигнатур. Если правильно откалиброван, LIBS может обеспечить количественные результаты. LIBS может анализировать твердые вещества, газы и жидкости практически без пробоподготовки. 1 Эти характеристики делают его идеальным для анализов, которые не могут быть выполнены в лаборатории.
В настоящее время, LIBS изучается для различных применений особенно те, которые требуют полевые измерения основе для количественного определения. 1-8 Это требует развитие LIBS приборов с использованием Строгий и компактный компоненты, пригодные для системы, основанный на полях. В большинстве случаев,компоненты как таковые не будут иметь все возможности лабораторного инструментария, тем самым ставя под угрозу производительность анализа. LIBS результаты зависят от параметров лазерного импульса и других условий измерений, которые включают выборки геометрию, окружающую атмосферу, и использование закрытого или не закрытый обнаружения. 9-12 Для поля на основе LIBS приборов, два важных фактора, чтобы рассмотреть энергия импульса и использование закрытого по сравнению с не-закрытого обнаружения. Эти два фактора определяют в значительной степени стоимость, размер и сложность инструмента LIBS. Маленькие, прочная конструкция лазеры, которые могут генерировать импульсов от 10-50 мДж на частотой повторения 0,3-10 Гц имеются в продаже и было бы весьма выгодно использовать. Таким образом, важно знать, что, если таковые имеются, потери в возможности обнаружения приведет в результате использования этих лазеров. Энергия импульса является ключевым параметром для LIBS так как она определяет количество материала удалена и испаряется и полукокс возбужденияристики плазмы. Кроме того, использование закрытого обнаружения может увеличить стоимость системы LIBS, в результате, крайне важно, чтобы определить разницу между спектрами и возможности обнаружения с использованием закрытого и не закрытый обнаружения.
В последнее время исследование было проведено сравнение закрытый обнаружения не-закрытого обнаружения для малых элементов, найденных в стали. Результаты показали, что пределы обнаружения были сопоставимы, если не лучше для не-закрытом обнаружения. 12 Одной из важных характеристик LIBS является то, что метод испытывает физические и химические эффекты матрицы. Примером первого является то, что лазерный импульс пары более эффективно с проведением / металлических поверхностей, чем не-проводящих поверхностей. 13 Для этого исследования мы хотели определить влияние энергетических и временных импульсов параметров непроводящих материалов, таких как почвы имитаторов.
Хотя, полевые портативные LIBS инструменты были разработаны и используютсядля некоторых приложений, комплексное исследование от возможностей обнаружения не была выполнена сравнения высокую энергию и закрытого системы для нижних энергетических и не закрытых систем с использованием почвы имитаторами. Это исследование фокусируется на лазерной энергии и временных импульсов параметров для определения микроэлементов в сложных матрицах. Энергия лазерного импульса в диапазоне от 10 до 100 мДж получить сравнение между низшими и высшими энергиями. Сравнение использования закрытого по сравнению с не-закрытого обнаружения также была проведена в том же диапазоне энергий.
При сравнении не-закрытого и закрытого режима обнаружения, предел обнаружения данные показывают, что режим закрытого обнаружения разрешено для обнаружения всех элементов, включая те, которые не были замечены использование более высоких лазерных энергий в не закрытом режиме обнаруже?…
The authors have nothing to disclose.
Эта работа финансировалась через Министерства энергетики США, Управление по науке.
Equipment | |||
Nd:YAG laser | Continuum | Surelite II | |
Echelle spectrograh/ICCD | Catalina/Andor | SE200/iStar | |
Digital delay generator | BNC | Model 575-4C | |
Hydraulic Press | Carver | Model-C | |
31-mm pellet die | Carver | 3902 | |
Power meter indictor model | Scientech, Inc. | Model number: AI310D | |
Power meter detector model | Scientech, Inc. | Model number: AC2501S | |
Oscilloscope | Tektronix | MSO 4054 | |
Optical fiber | Ocean Optics | QP1000-2-UV-VIS | |
Lens kit (this kit contains the 75 mm f.l. lens) | CVI Optics | LK-24-C-1064 | |
Reagent/Material list | |||
Synthetic silicate sample | Brammer Standard Company | GBW 07704 | |
Synthetic silicate sample | Brammer Standard Company | GBW 07705 | |
Synthetic silicate sample | Brammer Standard Company | GBW 07706 | |
Synthetic silicate sample | Brammer Standard Company | GBW 07708 | |
Synthetic silicate sample | Brammer Standard Company | GBW 07709 | |
Aluminum caps (for pressing synthetic silicate samples) | SCP Science | 040-080-001 |