Cette méthode décrit l'utilisation de la chimie clic pour mesurer les changements dans la transcription de la cellule hôte après infection par le virus de la fièvre de la Vallée du Rift (FVR) souche MP-12. Les résultats peuvent être visualisés qualitativement par microscopie à fluorescence ou obtenus quantitativement par cytométrie de flux. Cette méthode est adaptable pour une utilisation avec d'autres virus.
De nombreux virus à ARN ont développé la capacité à inhiber la transcription de la cellule hôte comme un moyen de contourner les défenses cellulaires. Pour l'étude de ces virus, il est donc important de disposer d'un moyen rapide et fiable de mesure de l'activité transcriptionnelle dans les cellules infectées. Traditionnellement, la transcription a été mesurée soit par incorporation de nucléosides radioactifs tels que 3H-uridine suivie d'une détection par autoradiographie ou comptage à scintillation, ou l'incorporation d'uridine halogénés analogues tels que le 5-bromouridine (BRU) suivie d'une détection par coloration immunologique. L'utilisation d'isotopes radioactifs, cependant, nécessite un équipement spécialisé et n'est pas réalisable dans un certain nombre de paramètres de laboratoire, tandis que la détection de BrU peut être lourde et peut souffrir d'une faible sensibilité.
La chimie de clic récemment mis au point, ce qui implique une formation de triazole cuivre catalysée par un azoture et un alcyne, offre maintenant une rapide et highly alternatif sensibles à ces deux méthodes. Cliquez chimie est un processus en deux étapes dans lequel ARN naissant est d'abord marquées par incorporation de l'uridine analogique 5 éthynyluridine (UE), suivie par la détection de l'étiquette avec un azoture fluorescent. Ces azides sont disponibles en plusieurs fluorophores différents, ce qui permet un large éventail d'options pour la visualisation.
Ce protocole décrit une méthode permettant de mesurer la répression de la transcription dans les cellules infectées par le virus de la fièvre de la Vallée du Rift (FVR) souche MP-12 à l'aide click chemistry. Parallèlement, l'expression de protéines virales dans ces cellules est déterminé par immunomarquage intracellulaire classique. Les étapes 1 à 4 en détail une méthode pour visualiser la répression de la transcription par microscopie à fluorescence, tandis que les étapes 5 à 8 détaillent une méthode pour quantifier la répression de la transcription par cytométrie de flux. Ce protocole est facilement adaptable pour une utilisation avec d'autres virus.
Traditionnellement, l'activité transcriptionnelle a été mesurée par incorporation de deux radioactif (3 H-uridine) ou 1 (BRU) 2 nucléosides halogénés en ARN naissants. Ces analogues d'uridine sont prises par les cellules, convertis en uridine triphosphate (UTP) à travers la voie de récupération nucléosidique, et par la suite incorporés dans l'ARN nouvellement synthétisé. 3H-uridine peuvent être détectés par autoradiographie, ce qui peut prendre beaucoup de temps, ou scintillation comptage, qui nécessite un équipement spécialisé. En outre, l'utilisation d'isotopes radioactifs ne peut être pratique dans un certain nombre de paramètres de laboratoire, y compris les laboratoires de biosécurité Haut de confinement. BrU peut être détectée par immunomarquage avec des anticorps anti-Bru, qui peuvent nécessiter perméabilisation dur pour assurer l'accès de l'anticorps dans le noyau ou la dénaturation partielle de l'ARN, que la structure secondaire de l'ARN pourrait être un encombrement stérique de la liaison d'anticorps.
_content "> Le protocole décrit ici utilise le récemment développé click chemistry 3 pour mesurer l'activité transcriptionnelle dans les cellules infectées par la souche RVFV MP-12. click chemistry s'appuie sur un cuivre très sélective et efficace (I) catalysée par réaction de cycloaddition entre un alcyne et un groupement azoture de 4,5. Dans ce protocole, ARN naissant dans les cellules infectées est d'abord marqué par l'incorporation de l'uridine analogique de l'UE. Dans un deuxième temps, le incorporée UE est détectée par réaction avec un azoture fluorescent. Les principaux avantages de cette méthode sont (1) qu'il ne nécessite pas l'utilisation d'isotopes radioactifs et (2) qu'il ne nécessite pas de perméabilisation sévère ou dénaturation de l'ARN. avec un poids moléculaire de moins de 50 Da, l'accès de l'azoture fluorescent n'est pas entravée par l'insuffisance structure secondaire perméabilisation ou d'ARN. Par ailleurs, les chercheurs ne sont pas limités dans leur choix d'anticorps primaires en combinant la détection de l'ARN avec une classeimmunocoloration iCal pour les protéines virales.Deux méthodes différentes sont décrites dans ce protocole: l'un pour la visualisation de la transcription par microscopie à fluorescence (étapes 1-4), et l'autre pour quantifier la transcription par cytométrie de flux (étapes 5-8). Ces deux méthodes combinent l'étiquetage des ARN naissant avec un immunomarquage intracellulaire des protéines virales, ce qui permet d'établir une corrélation entre l'activité transcriptionnelle et l'infection virale sur une base par cellule à cellule.
Les auteurs ont utilisé avec succès le protocole décrit ici de déterminer l'activité de transcription dans les cellules infectées par la souche RVFV MP-12 6 cellules infectées par différents-12 MP mutants 7,8, 9, et les cellules infectées par le virus Toscana (TOSV) 10. Le protocole décrit ici peut être facilement adapté pour une utilisation avec différents virus et a le potentiel d'être modifié pour inclure immunofluorescence des protéines virales ou cellulaires spécifiques.
Le protocole fourni décrit une méthode pour mesurer l'effet de l'infection virale sur la transcription de la cellule hôte via l'incorporation de l'uridine analogique UE en ARN naissants. Cette méthode présente plusieurs avantages par rapport aux méthodes précédentes: il est rapide, sensible et il ne repose pas sur l'utilisation des isotopes radioactifs. En outre, le procédé peut être adapté pour fournir des données qualitatives par microscopie à fluorescence ou des données quantitative…
The authors have nothing to disclose.
Nous remercions RB Tesh pour fournir la souris des anticorps polyclonaux anti-RVFV sérum et M. Griffin de l'UTMB cytométrie en flux Core Facility de l'aide avec la cytométrie de flux. Ce travail a été soutenu par 5 U54 AI057156 par le Centre régional de l'Ouest de l'excellence, NIH R01 AI08764301 et le financement du Centre Sealy pour le développement de vaccins à UTMB.BK a été soutenu par le Fonds James W. McLaughlin Fellowship à UTMB.OL a été soutenue par une bourse de chercheur Maurice R. Hilleman stade précoce carrière.
Name of Reagent/Material | Company | Catalog Number | Comments |
5-ethynyl-uridine | Berry & Associates | PY 7563 | dissolve in DMSO for 100 mM stock |
12-mm round coverslips | Fisherbrand | 12-545-82 | |
5 ml polystyrene tubes | BD Biosciences | 352058 | |
Actinomycin D (ActD) | Sigma | 9415 | dissolve in DMSO for 10 mM stock |
Alexa Fluor 488 goat anti-mouse IgG | Invitrogen | A-11029 | |
Bovine Serum Albumin (BSA) | Santa Cruz | sc-2323 | |
CuSO4 | Sigma | C-8027 | dissolve in H2O for 100 mM stock |
DAPI | Sigma | D-9542 | dissolve in H2O for 5 mg/ml stock |
DMEM | Invitrogen | 11965092 | |
FBS | Invitrogen | 16000044 | |
fluorescent azide (Alexa Fluor 594-coupled) | Invitrogen | A10270 | |
fluorescent azide (Alexa Fluor 657-coupled) | Invitrogen | A10277 | |
Fluoromount-G | Southern Biotech | 0100-01 | |
L-ascorbic acid | Sigma | A-5960 | dissolve in H2O for 500 mM |
paper filter | VWRbrand | 28333-087 | |
paraformaldehyde | Sigma | 158127 | |
Penicillin-Streptomycin | Invitrogen | 15140122 | |
poly-L-lysine (MW ≥ 70000) | Sigma | P1274 | |
Triton X-100 | Sigma | T-8787 | |
Trizma base | Sigma | T-1503 | dissolve in H2O for 1.5 M stock, pH 8.5 |
Trypsin-EDTA | Invitrogen | 25200056 | |
Fluorescence Microscope | e.g. Olympus IX71 | ||
Flow Cytometer | e.g. BD Biosciences LSRII Fortessa |