Colonization of the murine nasopharynx with Streptococcus pneumoniae and the subsequent extraction of adherent or recruited cells is described. This technique involves flushing the nasopharynx and collection of the fluid through the nares and is adaptable for various readouts, including differential cell quantification and analysis of mRNA expression in situ.
Nasopharyngeal colonization by Streptococcus pneumoniae is a prerequisite to invasion to the lungs or bloodstream1. This organism is capable of colonizing the mucosal surface of the nasopharynx, where it can reside, multiply and eventually overcome host defences to invade to other tissues of the host. Establishment of an infection in the normally lower respiratory tract results in pneumonia. Alternatively, the bacteria can disseminate into the bloodstream causing bacteraemia, which is associated with high mortality rates2, or else lead directly to the development of pneumococcal meningitis. Understanding the kinetics of, and immune responses to, nasopharyngeal colonization is an important aspect of S. pneumoniae infection models.
Our mouse model of intranasal colonization is adapted from human models3 and has been used by multiple research groups in the study of host-pathogen responses in the nasopharynx4-7. In the first part of the model, we use a clinical isolate of S. pneumoniae to establish a self-limiting bacterial colonization that is similar to carriage events in human adults. The procedure detailed herein involves preparation of a bacterial inoculum, followed by the establishment of a colonization event through delivery of the inoculum via an intranasal route of administration. Resident macrophages are the predominant cell type in the nasopharynx during the steady state. Typically, there are few lymphocytes present in uninfected mice8, however mucosal colonization will lead to low- to high-grade inflammation (depending on the virulence of the bacterial species and strain) that will result in an immune response and the subsequent recruitment of host immune cells. These cells can be isolated by a lavage of the tracheal contents through the nares, and correlated to the density of colonization bacteria to better understand the kinetics of the infection.
Before you begin: all steps are done in a Biohazard Level 2 (BSL2) Biological Safety Cabinet (BSC) unless otherwise stated. Please ensure that you have obtained the appropriate Biohazard Approval for use of infectious bacterial pathogens as per institutional guidelines prior to initiation of the experiments. Additionally, please ensure that you have all the materials and reagents necessary to conduct the procedure prepared beforehand. Mice used in these experiments have included female C57BL/6 mice from Jackson Laboratories, Charles River or Taconic and were 10-14 weeks of age (although we have not found any gender-dependent significant differences in kinetics of nasal colonization clearance or infection). All mice used in these experiments were bred and maintained under specific-pathogen free conditions, and were free of common viruses, (LCMV, MNV,MPV, reovirus ECTV, and other) bacteria (e.g. H. pylori) and parasites (e.g. pinworm, ectoparasites) by fecal sample testing as well as frequent anatomical assessment of sentinel mice cohoused within their facility rooms. When conducting these experiments, we recommend using control mice no younger than 10-12 weeks of age and no older than 6 months of age. Mice younger or older than this age range are more susceptible to longer nasopharyngeal carriage duration and increased likelihood of disseminating infection. Mouse background is another important consideration that may impact the outcomes of a colonization experiment, as several groups have demonstrated that mice of different genetic backgrounds have different susceptibilities to the S. pneumoniae D39 (serotype 2) strain9,10. S. pneumoniae is not a naturally occurring murine pathogen and its only natural reservoir is the human nasopharynx. Transmission occurs via respiratory droplets, and as mice do not produce respiratory secretions, individual mice cannot transmit the bacterium to other mice, so there is no concern for mouse-to-mouse transmission11. For a visual overview of the procedures described within this manuscript, please refer to Figure 1.
1. Preparation of S. pneumoniae Culture
2. Murine Intranasal Colonization
3. Nasal Lavage Sample Collection
Before beginning: prepare cannulated needles using 1 ml syringes capped with 26 3/8 G beveled needles. Cut 2.5 cm pieces of PE20 polyethylene tubing with an inner diameter 0.38 mm, ensuring that each end has a beveled tip. Using forceps, slide a 2.5 cm long piece of PE20 polyethylene tubing (inner diameter 0.38 mm) on to the needle tip, avoiding puncturing the tubing side. Cannulated needles can be kept in 70% ethanol until needed.
4. Determination of Bacterial Load in the Nasopharynx
5. Preparation of Samples for Flow Cytometery
Before beginning: Prepare mix of antibodies. For quantification of leukocyte populations, we recommend the following mix at the specified dilutions: PE-Ly6G (clone 1A8, 1 μg/ml), FITC-Ly6C (clone AL-21,1 μg/ml), eFluor 450-CD45 (clone 30-F11, 2.67 μg/ml), APC-F4/80 (clone PM8 RUO, 0.67 μg/ml), PerCP-Cy5.5-CD11c (clone N418 RUO, 0.5 μg/ml), PE-Cy7-CD11b (clone M1/70, 0.33 μg/ml), Alexa Fluor 700-CD3 (clone 1782, 4 μg/ml), eFluor 605NC-CD4 (clone GK1.5, 6.67 μg/ml). Please note that this mix is 2x concentration (see step 5.5). All antibodies should be diluted in FACs Wash buffer (0.5% fetal calf serum, 2mM EDTA, 0.1% sodium azide in PBS) which should also be prepared beforehand. In a mixture of isotype matched control antibodies, ideally from the same supplier as the labeled antibodies and at the same concentrations as the specific antibodies, should be prepared. The samples treated with the isotype control antibodies will function as the negative control. Any fluorescence observed in the samples treated with the isotype control antibodies should be considered background.
6. Quantitative PCR (qPCR) Analysis of Nasal Lavages
Figure 1 represents an overview schematic summarizing the main steps of the protocol. Figures 2-3 provide visualization of the microbiological methodology inherent to the protocols described herein. Figure 4 represents proper positioning of a mouse to perform an intranasal colonization, while Figure 5 depicts typically changes in weight of mice colonized with S. pneumoniae strain P1547. Figures 6-7 represent specific stages of the nasal lavage portion of the process, for assisted visualization of these two techniques. Figures 8-11 consist of representative results of analyses conducted on samples collected from the nasopharynx of a mouse following nasal lavage. Specifically, Figure 8 is a representative result of bacterial load in the nasopharynx, as determined through culturing of nasal lavages obtained from mice colonized either with S. pneumoniae strain P1121, P1547 or P1542. Figure 9 represents cell phenotyping of isolated nasopharyngeal immune cells using flow cytometric techniques. Figures 10-11 display representative results pertaining to expressional analysis of nasopharyngeal mRNA via quantitative PCR.
Figure 1. Flow chart of the intranasal inoculation and nasal lavage cell isolation procedures using a mouse model. First, the bacteria are prepared for inoculation, and then given to murine subjects intranasally. After the desired length of time elapses, mice are euthanized via terminal bleed, and their nasopharyngeal cells are isolated via two nasal lavage steps: a PBS wash step followed by a secondary wash in RNA lysis buffer. The cells from the preliminary PBS wash are isolated and analyzed using flow cytometry techniques, while RNA isolated from the second sample can be used to investigate the relative abundances of molecules of interest at the transcriptional level.
Figure 2. To determine bacterial concentration, 10 μl drops are plated in triplicate on a plate divided into sections representing a different serial dilution. These drops are then allowed to dry and the plates are incubated overnight at 37 °C, 5% CO2.
Figure 3. Concentration of Streptoccous pneumoniae isolated from the nasopharynx of a representative animal. Each discrete colony represents one colony forming unit, each collection of colonies represents one 10 μl drop (plated in triplicates) and each quadrant on the plate represents a separate serial dilution. Bacterial concentration is determined in CFU/ml by averaging the number of countable, fully formed colonies within, and then between, qualifying quadrants.
Figure 4. The movement of any mouse to be inoculated must be minimized, particularly at the neck, to allow for proper delivery of bacterial inoculum. To accomplish this, subject mouse is restrained in a modified restriction apparatus consisting of a 50 ml Falcon tube with an aperture at its tapered end. The mouse is then positioned so that its nose emerges from the aperture, where it can be accessed by the researcher, allowing for intranasal inoculation to be performed.
Figure 5. Weight of mice colonized with strain P1547 from a minimum of 2 representative experiments tracked daily following initial inoculation (n=6) to depict typical changes in weight expected following nasopharyngeal colonization. Weight is shown as a percent change of initial weight. Please note the expected sharp initial weight loss seen between days 3-5, followed by stabilization and gradual increase in weight in surviving mice.
Figure 6. Upon tracheal exposure, flanking longitudinal muscles are removed carefully prior to tracheal incision in a manner that does not severe the surrounding blood vessels. A small, semilunar incision is then made halfway up the trachea using fine surgical scissors. It is important to cut through the diameter of the trachea only partially, leaving it intact posteriorly.
Figure 7. Insertion of the cannulated needle into the tracheal aperture upwards towards the nose. Once cannula is in place, probe gently until resistance is met, then flush contents out through the nares.
Figure 8. A representative series of bacterial load isolated from the nasopharynx using the nasal lavage procedure described following colonization of C57BL/6 mice (triangles) with S. pneumoniae strain P1547 (A), P1542 (B) or P1121 (C). A comparative colonization of BALB/C mice (circles) following P1121 colonization is also displayed in (C). Different time points are shown throughout the course of colonization, including days 3, 7, 14, and 21. Generally, a high initial load is expected at day 3, with little diminishment at day 7. Clearance is typically initiated by day 14, with full or near-full clearance evidenced by day 21 following colonization with most strains. Click here to view larger figure.
Figure 9. Representative histogram (A) and dot plot (B) of total cells isolated from murine nasal lavages as analyzed by flow cytometry. The differential expression of markers on cell populations allows for the identification of leukocyte subsets through the use of fluorescent antibodies directed against these proteins. As shown here, leukocyte populations are selected by first gating on singlet cells using a Forward Scatter (area) versus Forward Scatter (width) gate (A), and then enriching for CD45+ cells within that subset (B). This population can be further subdivided into specific cell types by gating for CD11b and Ly6G double positive neutrophils (C). Analysis of the CD11b- population can be conducted to reveal F4/80+, CD11b-macrophages (D) or CD11b-, CD3 and CD4 double positive CD4 T cells (E). Cell populations can be phenotyped as long as they express either one, or a combination of several unique surface receptors that can be used to distinguish them from other cell types. Click here to view larger figure.
Figure 10. Representative electropherogram following electrophoresis automatic sequencing of a sample isolated from murine nasal lavages. The resulting electropherogram shows the quantitation data and the characteristic signature of a high quality total RNA sample derived from the nasopharyngeal region. When conducting analyses of total RNA, the areas under the RNA peaks for the two major ribosomal RNA, 18S and 28S, are used to calculate their corresponding ratio. Significant changes in the ratios of peaks attributable to 18S and 28S are typically indicative of degraded RNA. The degree of degradation can be summarized by RNA integrity number (RIN); the RIN for this representative sample is 8.1. An example of highly degraded RNA is shown in (B) and (C), and the subsequent RIN is 1.9 and 4.6, respectively. Click here to view larger figure.
Figure 11. Amplification plot (A) and dissociation (melting) curve (B) from qPCR analysis of nasal wash cell lysates, providing an example of how these two readouts should typically look following an efficient and correctly detected amplification of mRNA products isolated from the murine nasopharynx. Represented is a standard curve for the housekeeping gene 18S. The results displayed in (A) show the desired PCR product following amplification using primers against GAPDH. The line represents the cycle threshold (Ct). The point at which the amplification plots corresponding to different samples cross this threshold allows for comparison across samples, with lower values corresponding to higher amounts of RNA of interest contained therein. The plot in (B) shows that the maximum melting temperature of the qPCR product is 85 °C and that there are no contaminating products present in this reaction, which would show up as an additional peak separate from the desired product peak. Click here to view larger figure.
Strain Name | Serotype | Virulence | Mortality in Mice | Expected Colonization Duration |
P1121 | 23F | Asymptomatic | 0% | 21-28 days |
P1542 | 4 | Low | 0-20% | 21-28 days |
P1547 | 6A | Mid | 20-50% | 14-21 days |
D39 | 2 | High | 70-100% | 14-21 days |
Table 1. A tabular overview of 4 commonly employed S. pneumoniae clinical isolate strains, their corresponding serotype number, associated degree of virulence, expected proportion of in invasiveness within a colonized subset of mice and typical duration of a nasopharyngeal colonization.
In this study we presented detailed methods for the intranasal colonization of mice using a clinical isolate strain of Streptococcus pneumoniae and the subsequent isolation and characterization of the immune cells recruited to nasopharynx in response to the bacteria. We demonstrated how a bacterial inoculum can be cultured in nutrient-rich media and used to establish a colonization event in mice, which is initially restricted to the nasopharynx. We then showed how responding immune cell types that are recruited to nasopharynx can be isolated following tracheal exposure, incision and a nasal lavage through the use of a cannulated needle. Nasal lavage samples can be collected in PBS to isolate intact, lightly adherent cells; the RNA from more tightly adherent cells and surrounding epithelial mucosal layer can be isolated by applying a secondary wash consisting of RNA lysis buffer. The former of these samples can then be used to phenotype the specific cells recruited in the context of the colonization via flow cytometry techniques, while the latter can be applied to Q-PCR analysis, to determine the effector functions of these recruited cells by looking at the transcriptional expression of immune regulators of interest. Nasal lavage samples can additionally be used to determine the kinetics of clearance of a bacterial colonization event comparing different experimental groups to address specific research questions.
Utilization of this method of intranasal colonization allows for the establishment of a colonization event that is initially limited to the nasopharynx of the animal. Any subsequent dissemination of the bacteria to the blood or organs therefore occurs secondary to breaches in the immune defences localized within the nasopharyngeal mucosa. The stepwise progression achieved through this model reflects more accurately the process of pneumoccocal invasion in humans, allowing one to study the dynamics between the colonizing bacteria and the host nasal mucosa – and perhaps better understand shifts in bacterial pathogenicity and/or host immunity that allow for the development of disseminating disease. This is in contrast to models that forgo the establishment of an initial colonization event and elect to study invasive disease in isolation through direct delivery of the bacterial inoculum to the lungs via intratrachael instillation, to the blood via vascular injection or to the peritoneum via peritoneal injection.
Conducting a PBS nasal lavage following a colonization event allows for isolation of non- or mildly-adherent cells recruited to the nasopharynx, as well as any mucosally-associated bacteria. It should be noted, however, that this technique is limited as it will not release cells or bacteria that have travelled between or beneath the epithelium, nor will it allow for the harvesting of cells or bacteria that have localized to the nasal-associated lymphoid tissue (NALT), a lymphoid organ that has been reported to be a potential site of infection following a pneumococcal colonization17,18. If further study of the NALT is desired, we recommend microdissection and removal of this tissue wholesale for study following PBS nasal lavage; as these two techniques are not mutually exclusive, they may be conducted on the same animal. However, due to the lytic and destructive nature of the RNA harvesting step (the secondary lavage using RNA lysis buffer), this step should be omitted if intending to harvest the NALT. Although the nasal lavage is a less technically challenging procedure, for groups wishing to obtain a more comprehensive assessment of bacterial load that includes not only mucosally-associated bacteria, but also those that have invaded the nasopharyngeal tissue, we suggest harvesting the nasopharyngeal tissue following removal of the upper skull bone of colonized mice and dissection of the tissue within the nasal conchae, as described by others19.
The nature of an elicited immune response is dependent on the interaction between host and pathogen. Over 90 serotypes of S. pneumoniae have been characterized to date, all with differing levels of pathogenicity and virulence factor expression, resulting in differential prevalence in the human population20-23. Similarly, in mice, it has been reported that the extent of, and kinetics associated with, the immune response elicited in response to a nasopharyngeal colonization is dependent on the colonizing strain itself24. Thus, selection of an appropriate strain to utilize for the establishment of a nasopharyngeal colonization is not a trivial matter, nor is selection of mouse genetic background. Figure 8 provides sample data that depicts the kinetics of clearance of a nasopharyngeal colonization from 3 different S. pneumoniae strains following intranasal colonization of female mice on a C57BL/6 background. Table 1 provides an overview of the degree of virulence and length of colonization time expected (when utilized on the C57BL/6 background) with 4 S. pneumoniae clinical isolate strains described in the literature and known to be capable of establishing a nasopharyngeal coloninization25: the avirulent P1121 (serotype 23F)26,27 the low-virulence P1542 (serotype 4)28, the mid-virulence P1547 (serotype 6A)29-31, and the widely-used, well-characterized, highly virulent D39 (serotype 2)32-36. If the experimental goal is to strictly study an asymptomatic nasal colonization event with no accompanying bacterial dissemination to other tissues, we recommend use of the avirulent P1121 strain, which is characterized as a potent colonizer, as longer colonization events (up to 28 days prior to observed clearance) are a hallmark of this strain. Typically mice colonized with P1121 will run no risk of invasive disease and will display no clinical indicators of illness (with the exception of temporary weight loss). The remainder of the strains should be employed depending on desired degree of virulence and associated mortality, with virulence taken to mean not the degree of infection that develops within an individual mouse, but rather the proportion of mice that display clinical signs of illness. It should also be noted that typically, degree of virulence correlates inversely with length of colonization duration, with more virulent strains colonizing for a shorter period of time. All 3 of the described virulent strains lead to mortality in mice due to, most commonly, sepsis, with fulminant pneumonia, or concurrent pneumonia and sepsis developing in a subset of mice. The differences in localization of invasive bacteria may be strain-specific, as it has been previously reported that certain strains show tropisms for particular organs37. In a small percentage of animals, spontaneous meningitis may also develop following colonization. Determination of cause of death, as well as degree of invasiveness, can be accomplished via collection of associated tissues (lungs, spleen and/or brain) from animals at endpoint. Homogenization of these tissues and subsequent plating can indicate presence of invasive bacteria and corresponding titres.
An example of a bacterial culture density quantification is shown in Figure 3. If the culture is too concentrated, colonies grow too densely to be individually counted, however colonies derived from single cells can be distinguished if a log-wise dilution series is plated. Plating three technical replicates per dilution minimizes variability. Please note that when quantifying bacteria retrieved from a nasal colonization event, one may encounter cocultured contaminants, representing other bacterial species concurrently isolated from the murine nasopharynx. If the bacterial strain of interest has any known antibiotic resistances (for example, many strains of S. pneumoniae are resistant to gentamycin or neomycin up to 5 μg/ml), one can minimize the incidence of contaminants by supplementing the growth media with the antibiotic at an appropriate concentration, thereby limiting contaminant growth.
Flow cytometry can be used to analyze cell surface markers on nasal lavage samples. For example, for the analysis of cell types recruited in the context of an infection, a mix of antibodies specific for the gross differentiation of leukocytes, including macrophages (F4/80+), neutrophils (CD11b+ and Ly6G+), and T-cells (CD3+ and CD4+ or CD8+), can be used as previously published . Furthermore, these analyses can be combined with flow cytometric analysis conducted on different tissues or blood, to better understand immune cell trafficking during the course of an infection. Due to the limiting number of cells (typically numbering in the low thousands) that can be isolated from the nasopharynx, identifying rare subsets is typically challenging, although researchers wishing to accomplish this should consider pooling samples from multiple mice to achieve desired cell counts. Furthermore, because a finite number of cells can be extracted from this region, we recommend analyzing this data with regards to total cell numbers.
Although protein expression levels are typically low in the nasopharynx limiting the possibility of assaying protein production, it is possible to analyze the production of host molecules in response to the colonizing bacteria at the RNA level. To accomplish this, nasal lavages can be conducted using RNA lysis buffer in lieu of PBS, which allows for analysis of gene expression. For qPCR amplification detection, it is important to run a corresponding dissociation curve (Figure 11) to ensure the correct and desired product was detected. This is due to the fact that the assay will detect any double stranded DNA including primer dimers, contaminating DNA, and PCR product from misannealed primer.
We hope the methods described here will encourage you to apply an intranasal colonization model to study host responses to pathogens important in the context of this understudied region. For certain human pathogens, such as S. pneumoniae, a preceding nasopharyngeal colonization event acts as an important precursor to ensuing bacterial dissemination and the fatal sequelae that may follow, including propagation into the lungs, which may lead to pneumonia, or else to the blood, and resultant bacteremia and septic shock. Thus, by studying bacterial colonization in this region, we may understand better how to control it and prevent more serious pathology from occurring altogether.
The authors have nothing to disclose.
The authors would like to thank Dr. Jeffery Weiser of the University of Pennsylvania for his gift of the clinical strains of Streptococcus pneumoniae. This work was funded by the Canadian Institutes for Health Research. CV was funded by a M. G. DeGroote fellowship and a fellowship from the Canadian Thoracic Society. This work was funded by the Ontario Lung Association and Canadian Institutes of Health Research (CIHR). Work in the Bowdish laboratory is supported in part by he Michael G. DeGroote Centre for Infectious Disease Research and the McMaster Immunology Research Centre.
Name of Reagent/Material | Company | Catalog Number | |
Anti-Mouse Ly6C FITC | BD Pharmingen | 553104 | |
Anti-Mouse Ly6G PE | BD Pharmingen | ||
Anti-Mouse CD45.1 eFluor 450 | eBioscience | 48-0453-82 | |
Anti-Mouse F4/80 Antigen APC | eBioscience | 17-4801-82 | |
Anti-Mouse CD11c PerCP-Cy5.5 | eBioscience | 45-0114-82 | |
Anti-Mouse CD11b PE-Cy7 | eBioscience | 25-0112-82 | |
Anti-Mouse CD3 Alexa Fluor 700 | eBioscience | 56-0032-82 | |
Anti-Mouse CD4 eFluor 605NC | eBioscience | 93-0041-42 | |
Intramedic Polyethylene Tubing – PE20 | Becton Dickinson | 427406 | |
BD 1ml Syringe | Becton Dickinson | 309659 | |
BD 26G3/8 Intradermal Bevel | Becton Dickinson | 305110 | |
Buffer RLT Lysis Buffer | Qiagen | 79216 | |
Difco Tryptic Soy Agar | Becton Dickinson | 236950 | |
Defibrinated Sheep Blood | PML Microbiologicals | A0404 | |
RNAqueous-Micro Kit | Ambion | AM1931 | |
M-MuLV Reverse Transcriptase | New England Biolabs | M0253L | |
GoTaq qPCR Master Mix | Promega | A6001 |