我々は、光学投影断層撮影(OPT)の適応を述べる<sup> 1</sup>近赤外スペクトルにおけるイメージング、計算ツールの数の実装に。これらのプロトコルは、より大きな標本では、膵β細胞量(BCM)の評価を可能にする技術のマルチチャンネル容量を増やすとOPTデータの品質を高める。
近赤外(NIR)スペクトルにおけるイメージングの機能を含むようにOPTを適応することによって、私たちはここでそのようなラット膵臓などの膵臓組織のイメージより大きい体に可能性を示しており、チャンネル数(細胞型)かもしれないを高めるために一つの標本で検討する。 、2 /改善されたアルゴリズムのポストのための回転軸(AR)の2の質量の試料の(私たちの例では膵臓)中心(COM)の1 /正確な位置決め:我々は、さらに提供する計算ツールの数の実装を記述するトモグラフィー再構成2と3 / OPTベースBCMの決定3で信号対雑音比を向上させる強度等化のためのプロトコルの間に幾何学的な歪みを防ぎアライメント調整。加えて、我々は、画像取得時の試料の意図していない動きのためにリスクを最小限に抑え、試料ホルダを記述します。一緒に、これらのプロトコルでは、BCMの分布とothの評価を可能にするえー機能、ランゲルハンス氏島の個々のレベルまでの分解能で、無傷の膵臓や他の臓器(膵島移植の研究でEG)の体積全体にダウンして実行される。
β細胞をインスリン産生、血中グルコースの恒常性を制御するための体の能力のための鍵となります。したがって、膵臓のBCM分布の評価は、前臨床糖尿病研究の多くの分野に欠かせません。例えば、治療体制の評価では、疾患のげっ歯類モデルにおける内分泌細胞の分化や糖尿病病因の研究上の標的遺伝子アブレーションの影響は、しばしばこのような分析に依存しています。伝統的には、評価のこれらのタイプは、膵臓の大きさや複雑な解剖学的憲法によって履行をすることが困難で時間のかかる立体的なアプローチに頼ってきた。現時点で最も高解像度イメージングアプローチは(通常光)、げっ歯類で全体膵臓イメージングを可能にするのに十分な溶け込み深さを提供していません。逆に、彼らの侵入深さ(通常、核)によって制限されていないイメージングアプローチはフルBCMの分布を解決するために、貧しい人々の解像度に提供し、妨げられ4,5十分な造影剤の不足による。
光学投影断層撮影は、cmスケール6〜mmの医学標本の高解像度の評価を可能にする3Dイメージングモダリティである。これにより、空間的な位置とランゲルハンス島を表現する個々のインスリンの量に関する情報は、正常および糖尿病マウス3,7-10における膵臓の体積全体を抽出することができる。現在の研究の目的は、さらに膵β細胞の評価のために、この技術の能力を強化するためであり、他の組織、他の膵臓の成分(例えば、細胞型に浸潤など)との関係に、より大きなでグラフト化されたそれらの内因性分布、従来よりも膵臓の準備。
近赤外光学投影断層撮影法(NIR-OPT)をセットアップ
以下のプロトコルは、最大シャープによって記述された元のセットに基づいて、OPTのスキャナで<e近赤外域での撮像に適応メートル>ら1は 、記載されて使用されます。マウスの膵臓の単一チャネルアセスメント(BCMの例 )については、SkyScan 3001(Bioptonics)スキャナを使用することができる。
650nmの波長で上記の水銀アークランプよりも高い励起エネルギーを提供メタルハライドランプは、励起光を供給します。光は液体ライトガイドを介して転送されます。蛍光色素と近赤外蛍光イメージングおよびチャネル分離のためのバンドパスフィルタの有用な組み合わせを図3に示します。放出された光は、NIRスペクトルで高い量子効率で、バック点灯CCDカメラで検出された。 OPTのスキャンはカメラとステッピングモータを制御LabVIEWプラットフォームを使用して自動化されています。無傷ラット膵臓の大きさのサンプルをサポートするために、保護された銀コートミラーと大きなキュベットが使用されます。最後に、不要な垂直movemenを排除試料ホルダースキャン中にサンプルのtsは設計されました。
OPTイメージングのため記載されている技術は、マウス膵臓の体積全体の空間的および定量的なパラメータの抽出を可能にします。メゾスコピックイメージングそれのこのタイプのための達成可能な解像度の制限のために留意すべきで、そのほとんどの画像診断法のような、より大きな標本低い解像度(高解像度CCDの使用は、OPTスキャンの解像度を上げる必要がありますが) 。従って、無傷膵臓マウスローブの評価のために、現状では技術はあるが近く(約15から20μm)を7単一細胞の解像度を提供していません。それでも、マウスの膵臓におけるBCMの分布を抽出するためのプロトコルがうまく形態計測3,13を数えるなどポイントによって得られたものと一致している以上のことに留意する必要があることをデータを提供してきたそのCLAHEプロトコルの実装は、かなり多くの小島の検出が可能になるものの、 、これらの小島は、一般に小さく、貢献しないTEは、実質的に全体的なβ細胞のボリュームに。
関係する免疫組織化学プロトコル(最大2週間まで)比較的長いですが、試料作製のための時間上の実際の手は短いですので、テクニックはよく動物が9の大規模コホートの研究に適しています。異種遺伝子型の分布パターンの電位が調査の焦点である場合は、注意が固定に関して、膵臓組織が不利な方法で固定となり、フラット( "広がる"ことを避けるために、実装工程で取られるべきであることを強調すべきである組織の)マウントはそのような評価を容易にするために努力しなければならない。
OPTを実行する重要な問題は、サンプルのCOMは回転軸に固定されており、それがスキャン手順中に、垂直または水平に動かないことをされるということです。したがって、それはattachiのための安定した機械的なセットアップとうまく動作するシステムを構築することが不可欠であるngのサンプル。私たちは、新しいマウント( 図7)を構築することによってこの問題を解決しました。
パラレルジオメトリは背中と記録された投影画像内の周辺のオブジェクトの前の位置の間の垂直シフトとして検出された私たちのNIR-OPTまたはBioptonics 3001スキャナには当てはまりませんでした。 (2.3.1を参照)、それぞれのスキャナのログファイルにソースの距離にオブジェクトを調整することによって、私たちはかなり我々のデータの品質を向上させる可能性があり、特に重要である投影画像の遠端で幾何学的な歪みを補正するとき大きな標本を評価する。
現在のプロトコルでは、我々は3つの異なる特定のチャンネルと無傷膵臓製剤の評価に "解剖"チャネルの可視化を可能にするフィルタセットの提案を提供します。明らかに、これらの設定には、蛍光のすべての形態と同様に、より良いものの、与えられた研究のために利用蛍光色素に合うように変調されたかもしれないセント顕微鏡は、信号ブリードスルーの潜在的な危険性を慎重に評価する必要があります。 750 nm以上に興奮している蛍光色素で標識された膵島のインスリンの研究は、まだ我々のセットは、最大利用しているメタルハライドランプを使用しては不可能であった。それは代替光源( 例えば、ダイオードレーザー)との組合せで適切な波長でさえ高い量子効率を持つカメラはさらにNIR-OPTの潜在力を高め、より高い波長でのイメージングを可能にする可能性があります。
OPTイメージングは、mm-cmの規模で生物医学標本の空間的および定量的な評価のための汎用性の高いテクニックです。ここに提示されたプロトコルが膵臓/糖尿病の研究の主な目的のために開発されてきたが、彼らは他の種、試料の種類とマーカーの研究に翻訳することは可能であるべきです。 NIR-OPTイメージングF、無傷膵臓製剤中に、いくつかの異なるチャネルを可視化するための潜在的なバイurtherている限り、これらの造影剤はまた、OPTによって検出可能な蛍光色素分子を運ぶように設計することができるように、他の画像診断法により非侵襲的評価のために意図された造影剤の取り込みの特異性を評価するためのツールとしての可能性を秘めている。
The authors have nothing to disclose.
博士のP.リンドストロームは、ob / obマウスを提供するために承認されます。 J.レヒトネンは、ビデオ制作·編集のヘルプについては、J.ギルバートの支援については認められています。本研究では、糖尿病研究所財団(AP)は、若年性糖尿病研究財団(APとUA)は、欧州委員会からの補助金によって支えられない(FP-7、グラント契約:CP-228933から2 IP)(JSとUA)は、ケンペ財団、ウメオ大学とUAにスウェーデンの研究評議会
Name of Reagent/Material | Company | Catalog Number | Comments |
Methanol | Scharlau | ME03162500 | |
30% H2O2 | Scharlau | HI01362500 | |
Benzyl Alcohol | Scharlau | AL01611000 | |
Benzyl Benzoate | Scharlau | BE01851000 | |
Low-meltingpoint agarose | LONZA | 50100 | |
Paraformaldehyde (PFA) | Sigma-Aldrich | 158127 | |
DMSO | Sigma-Aldrich | D5879 | |
Triton-X100 | Sigma-Aldrich | T8787 | |
Mouse anti-aSMA-Cy3 | Sigma-Aldrich | C6198 | Primary antibody |
Rabbit anti-CD3 | Sigma-Aldrich | C7930 | Primary antibody |
Guinea Pig anti-Ins | DAKO | A0564 | Primary antibody |
Donkey anti GP-IRDye680 | LI-COR Biosciences | 926-32421 | Secondary antibody |
Goat anti Rb-DyeLight750 | Thermo Scientific | 35570 | Secondary antibody |
Goat anti GP-Alexa594 | Molecular Probes | A-11076 | Secondary antibody |
Goat anti GP-Alexa488 | Molecular Probes | A-11008 | Secondary antibody |
Goat anti GP-Alexa594 | Molecular Probes | A-11012 | Secondary antibody |
Goat anti GP-Alexa680 | Molecular Probes | A-21076 | Secondary antibody |
Goat anti GP-Alexa750 | Molecular Probes | A-21039 | Secondary antibody |
OPT Skyscan 3001 | Bioptonics | OPT-Scanner | |
Leica MZ FLIII | Leica Microsystems | Stereomicroscope | |
Leica Objective 0.5x | Leica Microsystems | 10446157 | |
Leica Camera adapter 1.0x | Leica Microsystems | 10445930 | |
EL6000 Metal Halide | 11504115 | Lightsource | |
Liquid Light Guide | 11504116 | ||
Cuvette | Hellma Analytics | 6030-OG | 55 x 55 x 52.5 mm |
Mirror | Edmund Optics | F68-334 | 50 x 50 mm |
Andor Ikon-M | Andor Technology | DU934N-BV | Back-illuminated CCD |
Filterset | Chroma Technology | 41021-MZFLIII | TXR, Alexa-594, Cy3 |
Filterset | Chroma Technology | 41022-MZFLIII | IRDye680, Alexa-680 |
Filterset | Chroma Technology | 49037-MZFLIII | Dylight750, Alexa-750 |
ProteinG-Sepharose beads | GE Healthcare | 17-0618-01 | Protein G Sepharose 4 Fast Flow |
Sodium Azide | Sigma-Aldrich | 08591 | Sodium azide 0.1 M solution |