Summary

运行轮活动在啮齿类动物的昼夜节律的记录和分析

Published: January 24, 2013
doi:

Summary

昼夜节律在自愿轮运行活动在哺乳动物中的紧密耦合的分子在大脑中的主时钟振荡。因此,这些生活节奏的行为可以被用来研究这个生物钟的功能,遗传,药物和环境因素的影响。

Abstract

当啮齿动物可以免费使用在自己的笼子里一个跑轮,这轮自愿使用将取决于1-5天的时间。夜间啮齿动物,包括老鼠,仓鼠,老鼠,是活跃在夜间和白天的相对不活跃。许多其他的行为和生理的措施,也表现出的生活节奏,但在啮齿动物中,运行轮活动主生物钟,下丘脑的视交叉上核(SCN)的输出作为一个特别可靠和方便的措施。在一般情况下,通过一个过程被称为夹带,每天运行轮活动模式自然会与环境的明暗周期(LD周期, 例如 12小时光照:12小时暗)对齐。但昼夜节律是内源性产生的行为模式,表现出了〜24小时内,并坚持不断的黑暗。因此,在一个LD周期的情况下,记录和分析的行驶轮活动被用来确定主观时间 – 日期。因为这些导演的生物钟节律被称为主观时间天的昼夜时间(CT)。相反,当一个LD周期本,被称为天时间确定由环境LD周期给时的时间(ZT)。

虽然运行轮活动的昼夜节律,通常与SCN时钟6-8,也可能参与昼夜节律振荡器在许多其他地区的大脑和身体9-14日活动节律的调节。例如,生活节奏在食品预见性的活动不要求的SCN 15,16和取而代之的是,与额外的SCN振荡器17日至20日在活动中发生变化。因此,运行轮活动记录的行为提供了重要的信息不仅SCN的主时钟输出,同时也对额外的SCN振荡器的活动。下面我们DESCRIBE使用的设备和方法,记录,分析和显示啮齿类实验动物的自发活动节律昼夜。

Protocol

1。动物房 凯奇:为了记录的个人啮齿动物活动的运行轮,每个网箱应当拥有一个单一的啮齿动物和运行轮。由于正在运行的车轮可以被认为是一个形式丰富,在所有研究中的所有啮齿动物应该有类似的访问到正在运行的车轮。 床上用品的变化:动物的处理以及在笼子里或床上用品,都可以非光的昼夜节律的影响,21日至23日的 ,所以,笼网地板?…

Representative Results

计算机程序:专门的计算机程序代的actograms和计算的昼夜周期中通常使用的。这些计划包括,但不限于,Actiview(弯,Minimitter,OR)和Circadia。 actograms:Actograms提供每日的行驶轮活动模式的图解说明。有单密谋(x-轴= 24小时)和双绘制(x-轴= 48小时)actograms。这两种方法情节连续的天从上到下,但双绘制actograms情节两天就每一个水平线。具体而言,双,绘制actograms显示在最右…

Discussion

监测日活动节律运行的车轮是最常用和最可靠的方法来评估在夜间啮齿类动物的主生物钟的输出。轮运行的活动,但是,只有一个,可以连续监测的行为和生理的许多方面。虽然绝大多数的磨合轮活动发生在夜间,超过30%的总觉醒发生在白天25,26。其他端点可用于评估,包括活动,食品斌方式,饮酒,睡眠,体温的昼夜节律。因此,根据性质的研究中,研究人员记录数的节奏同时进行。

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

作者要感谢全宗德拉RECHERCHE连接健康魁北克省(FRSQ),加拿大卫生研究院(CIHR),自然科学和工程研究理事会,加拿大(NSERC)的薪酬奖励,设备补助金,营运资金,和Concordia大学研究主席的计划(CRUC),以及在此稿件由简·斯图尔特博士颇有见地的反馈意见。

Materials

Name of the reagent Company Catalogue number Comments (optional)
Vitalview Card & Software Mini Mitter #855-0030-00 (Bend, OR, USA)
DP24 Dataport Mini Mitter #840-0024-00 (Bend, OR, USA)
QA4-Module Mini Mitter #130-0050-00 (Bend, OR, USA)
Magnetic Switch Mini Mitter #130-0015-00 (Bend, OR, USA)
C-50 Cable assembly Mini Mitter #060-0045-10 (Bend, OR, USA)
Rat running wheel assembly Mini Mitter #640-0700-00 (Bend, OR, USA)
Cage and tray support Mini Mitter #640-0400-00 (Bend, OR, USA)
Useable cut away cage Mini Mitter #664-2154-00 (Bend, OR, USA)
Grid floor for cage Mini Mitter #676-2154-00 (Bend, OR, USA)
Waste tray Mini Mitter #684-2154-00 (Bend, OR, USA)
Lamp housing Microlites Scientific #R-101 (Toronto, ON, Canada)
4W Fluorescent lamps Microlites Scientific #F4T5/CW (Toronto, ON, Canada)
Isolation chambers Custom built 28″H x 20″W x 28″D ½” Black Melamine.

Referencias

  1. Pittendrigh, C. S., Daan, S. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. V. Pacemaker Structure: A Clock for All Seasons. J. Comp. Physiol. 106, 333-355 (1976).
  2. Pittendrigh, C. S., Daan, S. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. IV. Entrainment: Pacemaker as Clock. J. Comp. Physiol. 106, 291-331 (1976).
  3. Pittendrigh, C. S., Daan, S. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. III. Heavy Water and Constant Light: Homeostasis of Frequency?. J. Comp. Physiol. 106, 267-290 (1976).
  4. Pittendrigh, C. S., Daan, S. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. II. The Variability of Phase Response Curves. J. Comp. Physiol. 106, 253-266 (1976).
  5. Pittendrigh, C. S., Daan, S. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. I. The Stability and Lability of Spontaneous Frequency. J. Comp. Physiol. 106, 223-252 (1976).
  6. Ralph, M. R., Foster, R. G., Davis, F. C., Menaker, M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 247, 975-978 (1990).
  7. Moore, R. Y., Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42, 201-206 (1972).
  8. Stephan, F. K., Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. U.S.A. 69, 1583-1586 (1972).
  9. Abe, M., et al. Circadian rhythms in isolated brain regions. J. Neurosci. 22, 350-356 (2002).
  10. Yamazaki, S., et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 288, 682-685 (2000).
  11. Lamont, E. W., Robinson, B., Stewart, J., Amir, S. The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc. Natl. Acad. Sci. U.S.A. 102, 4180-4184 (2005).
  12. Amir, S., Lamont, E. W., Robinson, B., Stewart, J. A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. J. Neurosci. 24, 781-790 (2004).
  13. Yoo, S. H., et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 101, 5339-5346 (2004).
  14. Guilding, C., Piggins, H. D. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain?. Eur. J. Neurosci. 25, 3195-3216 (2007).
  15. Boulos, Z., Terman, M. Food availability and daily biological rhythms. Neurosci. Biobehav. Rev. 4, 119-131 (1980).
  16. Boulos, Z., Rosenwasser, A. M., Terman, M. Feeding schedules and the circadian organization of behavior in the rat. Behav. Brain Res. 1, 39-65 (1980).
  17. Verwey, M., Amir, S. Food-entrainable circadian oscillators in the brain. Eur. J. Neurosci. 30, 1650-1657 (2009).
  18. Davidson, A. J., Poole, A. S., Yamazaki, S., Menaker, M. Is the food-entrainable circadian oscillator in the digestive system?. Genes Brain Behav. 2, 32-39 (2003).
  19. Hara, R., et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells. 6, 269-278 (2001).
  20. Damiola, F., et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950-2961 (2000).
  21. Mrosovsky, N. Phase response curves for social entrainment. J. Comp. Physiol. A. 162, 35-46 (1988).
  22. Cain, S. W., et al. Reward and aversive stimuli produce similar nonphotic phase shifts. Behav. Neurosci. 118, 131-137 (2004).
  23. Antle, M. C., Mistlberger, R. E. Circadian clock resetting by sleep deprivation without exercise in the Syrian hamster. J. Neurosci. 20, 9326-9332 (2000).
  24. Banjanin, S., Mrosovsky, N. Preferences of mice, Mus musculus, for different types of running wheel. Lab Anim. 34, 313-318 (2000).
  25. Verwey, M., Lam, G. Y., Amir, S. Circadian rhythms of PERIOD1 expression in the dorsomedial hypothalamic nucleus in the absence of entrained food-anticipatory activity rhythms in rats. Eur. J. Neurosci. 29, 2217-2222 (2009).
  26. Gooley, J. J., Schomer, A., Saper, C. B. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci. 9, 398-407 (2006).

Play Video

Citar este artículo
Verwey, M., Robinson, B., Amir, S. Recording and Analysis of Circadian Rhythms in Running-wheel Activity in Rodents. J. Vis. Exp. (71), e50186, doi:10.3791/50186 (2013).

View Video