Многогранный подход к изучению функциональных изменений в гиппокампе схемы объясняется. Электрофизиологические методы описаны наряду с травмой протокол, поведенческие тестирование и региональных метод рассечения. Сочетание этих методов могут быть применены аналогично для других регионов мозга и научные вопросы.
Черепно-мозговой травмы (ЧМТ) страдают более 1,7 миллионов человек в Соединенных Штатах каждый год и даже легкой ЧМТ может привести к стойким неврологическим нарушениями 1. Два распространенных и отключение симптомы, наблюдаемые у TBI оставшихся в живых, нарушения памяти и снижение судорожного порога, как полагают, быть опосредованы TBI-индуцированной дисфункции гиппокампа 2,3. Для того, чтобы продемонстрировать, как измененная функция гиппокампа цепи отрицательно сказывается на поведении после ЧМТ у мышей, мы используем боковые травмы перкуссия жидкостью, обычно используются модели животных TBI, которая воссоздает многие черты человека TBI, включая потерю нейронов клетки, глиоза и ионной возмущения 4 – 6.
Здесь мы показываем, комбинаторный метод исследования TBI-индуцированной дисфункции гиппокампа. Наш подход включает в себя несколько бывших естественных физиологических методов совместно с поведением животных и биохимический анализ, с целью анализапост-ЧМТ изменения в гиппокампе. Начнем с экспериментальной парадигмы травмы наряду с поведенческого анализа для оценки когнитивных инвалидности после ЧМТ. Далее, есть три отдельных бывших естественных методов записи: внеклеточный потенциал поля записи, визуализировал цельноклеточной патч-зажима, и напряжение чувствительных записи красителя. Наконец, мы демонстрируем метод рассечения региональном субрегионов гиппокампа, которая может быть полезна для детального анализа нейрохимические и метаболические изменения пост-ЧМТ.
Эти методы были использованы для изучения изменений в гиппокампе схемы после ЧМТ и прощупать противоположных изменений в сетевую функцию схемы, которые происходят в зубчатой извилине и субрегионов CA1 гиппокампа (см. Рисунок 1). Способность анализировать пост-ЧМТ изменений в каждом субрегионе имеет важное значение для понимания основных механизмов, способствующих TBI-индуцированной поведенческих и когнитивных гeficits.
Многогранной системой, изложенные здесь, позволяет следователям пройти мимо характеристика феноменологии индуцированных болезненного состояния (в данном случае ЧМТ) и определить механизмы, ответственные за наблюдаемые патологии, связанной с ЧМТ.
Каждый метод изложенных выше вносит свой вклад в более глубокое понимание основной причиной, приводящей к наблюдаемым поведенческим дефицитом. Сочетание уникальных информацию, полученную от каждого метода мы можем исследовать биологические механизмы, с большей точностью.
<p class="jove_…The authors have nothing to disclose.
Авторы хотели бы поблагодарить Эллиот Буржуазные за техническую помощь. Эта работа финансировалась Национальным институтом здоровья гранты R01HD059288 и R01NS069629.
Name of the equipment | Company | Catalogue number | Comments (optional) |
Axopatch 200B amplifier | Molecular Devices | AXOPATCH 200B | Patch-clamp rig |
Digidata 1322A digitizer | Molecular Devices | Patch-clamp rig | |
MP-225 micromanipulator | Sutter | MP-225 | Patch-clamp rig |
DMLFSA microscope | Leica | Patch-clamp rig | |
Multiclamp 700B amplifier | Molecular Devices | MULTICLAMP 700B | Multipurpose (field) rig |
Digidata 1440 digitizer | Molecular Devices | Multipurpos (field) rig | |
MPC-200 micromanipulator | Sutter | MPC-200 | Multipurpose (field) rig |
BX51WI microscope | Olympus | BX51WI | Multipurpose (field) rig |
Axoclamp 900A amplifier | Molecular Devices | AXOCLAMP 900A | VSD rig |
Digidata 1322 digitizer | Molecular Devices | VSD rig | |
Redshirt CCD-SMQ camera | Redshirt | NCS01 | VSD rig |
VT 1200S Vibratome | Leica | 14048142066 | |
P-30 Electrode puller | Sutter | P-30/P | |
cOmplete protease inhibitor | Roche | 11697498001 |