Uma estratégia geral para o desenvolvimento de carga de separação de compostos semicondutores nanocristais implantáveis para a produção de energia solar é apresentada. Mostra-se que a montagem de domínios dador-aceitador de nanocristais de uma geometria de nanopartículas único dá origem a uma função fotocatalítica, enquanto bulk-heterojunções de dador-aceitador de nanocristais películas podem ser usados para a conversão da energia fotovoltaica.
Conjugando materiais semicondutores diferentes em um único nano-compósito fornece meios sintéticos para o desenvolvimento de novos materiais optoelectrónicos que oferecem um controle superior sobre a distribuição espacial dos portadores de carga através de interfaces de material. Como este estudo demonstra, uma combinação de dador-aceitador de nanocristais (NC) os domínios de uma nanopartícula único pode conduzir para a realização da eficiência fotocatalítica 1-5 materiais, enquanto que um conjunto de camadas de doadores e aceitador de nanocristais como filmes dá origem a fotovoltaica materiais.
Inicialmente, o trabalho se concentra na síntese de compostos inorgânicos nanocristais, compreendendo ZnSe linearmente empilhados, CDS e domínios PT, que em conjunto promovem a separação de cargas fotoinduzida. Essas estruturas são usadas em soluções aquosas para a fotocatálise de água sob a radiação solar, o que resultou na produção de H2 gasoso. Para melhorar a separação de fotoinduzidacargas, uma morfologia nanorod com um gradiente linear de origem de um campo eléctrico intrínseca é utilizada 5. A energética inter-domínios são então optimizados para conduzir electrões fotogerados em direcção ao local catalítico Pt enquanto os orifícios de expulsão para a superfície de domínios de ZnSe para regeneração sacrificial (via metanol). Aqui, mostramos que a única forma eficaz de produzir hidrogénio é a utilização de dadores de electrões ligantes para passivar os estados de superfície por meio do ajuste do alinhamento nível de energia na interface semicondutor-ligando. Redução estável e eficiente da água é permitido por estes ligandos, devido ao fato de que as vagas na banda de valência do domínio semicondutor, evitando buracos energéticos de danificá-la. Especificamente, mostra-se que a energia do furo é transferido para a porção de ligando, deixando o domínio funcional de semicondutores. Isso nos permite retornar o sistema nanocristais-ligante toda para um estado funcional, quando os ligantes são degradados, Pela simples adição de ligandos frescos para o sistema 4.
Para promover uma separação de carga fotovoltaica, usamos um sólido de duas camadas composto de dois filmes de PbS e TiO. Nesta configuração, os electrões fotoinduzida são injectados TiO 2 e são, subsequentemente, retirada por um eléctrodo FTO, enquanto que os furos são canalizados para um eléctrodo de Au através de PbS camada 6. Para desenvolver este último, apresentamos um semicondutor Matrix Matrizes encapsulados nanocristal (Smena), estratégia que permite a ligação PbS CNs na matriz circundante de semicondutor CdS. Como resultado, os sólidos fabricados exibem excelente estabilidade térmica, atribuído à estrutura heteroepitaxial de nanocristais de matriz interfaces, e mostrar o desempenho decolheita convincente em células solares protótipo 7.
Este estudo demonstra como arquitecturas de compósitos de nanocristais inorgânicos podem ser empregues para conseguir uma separação espacial de cargas fotoinduzidas. Em particular, estes compósitos permitir o ajuste fino da distribuição de cargas em todo os dois domínios, que são, então, disponível para realizar qualquer função fotocatalítica ou fotovoltaica. Por exemplo, fotocatalisadores eficientes pode ser feita caso de doadores e aceitadores de nanocristais domínios são construídos numa única nanop…
The authors have nothing to disclose.
Nós gostaríamos de agradecer o Dr. Felix Castellano (BGSU) e NR Neal para discussões conselhos e valioso. Agradecemos Obor "Material Networks" do programa e Bowling Green State University de apoio financeiro. Este trabalho foi parcialmente financiado pela NSF sob Prêmio CHE – 1112227.
Name of the reagent | Company | Catalogue number | Comments (optional) |
octadecylamine (ODA), 90% | Fisher | AC12932-0050 | |
selenium (Se), 200 mesh | Acros | AC19807-2500 | |
tri-n-octylphosphine (TOP), 97% | Strem | 15-6655 | Air Sensitive |
diethyl zinc (Et2Zn), 10% by wt. | Aldrich | 22080 | Air Sensitive, Light Sensitive |
methanol, 99.8%, anhydrous | Aldrich | 179337 | |
toluene, 99.8%, anhydrous | Aldrich | 244511 | |
tri-n-octylphosphine oxide (TOPO), 99% | Aldrich | 223301 | |
n-octadecylphosphonic acid (ODPA), 98% | PCI Synthesis | 104224 | |
hexylphosphonic acid (HPA), 98% | PCI Synthesis | 4721-24-8 | |
cadmium oxide (CdO), 99.99% | Aldrich | 202894 | |
sulfur (S), 99.999% | Acros | AC19993-0500 | Strong odor |
11-mercaptoundecanoic acid (MUA), 95% | Aldrich | 450561 | |
potassium hydroxide (KOH) | Acros | AC13406-0010 | |
chloroform | VWR | EM-CX1059-1 | |
lead oxide (PbO), 99.999% | Aldrich | 32306-1KG | |
1-octadecene (ODE), 90% | Aldrich | O806-25ML | |
oleic acid (OA), 90% | Aldrich | O1008-1G | |
bis(trimethylsilyl) sulfide (TMS), synthetic grade | Aldrich | 283134-25G | Air sensitive, strong odor, highly reactive |
acetone | EMD Chemicals | AX0118-2 | |
cadmium acetate | Acros | AC31713-5000 | |
sodium sulfide nonahydrate (Na2S•9H2O), 98% | Alfa Aesar | CB1100945 | Light sensitive |
hexadecyltrimethyl ammonium bromide (CTAB), 99% | Sigma | H6269-100G | |
oleylamine, 70% | Aldrich | O7805-5G | |
diphenyl ether | Alpha Aesar | 101-84-8 | |
1,2-hexadecanediol | TCI | 6920-24-7 | |
Pt (II) acetylacetonate, 97% | Aldrich | 282782-5G | |
isopropanol, 99.8%, anhydrous | Acros | AC32696-0025 | |
titanium tetrachloride (TiCl4), 99.9% | Aldrich | 697079-25G | Extremely air sensitive |
titanium dioxide, DSL 90T | DyeSol | DSL 90T | |
terpineol | MP Biomedical | 98-55-5 | |
3-mercaptopropionic acid (MPA), 99% | Alfa Aesar | A10435 | Strong odor |
octane, anhydrous, 99% | Aldrich | 412236 |