Summary

糖尿病大鼠的热痛觉阈值的快速测定

Published: May 17, 2012
doi:

Summary

在这里,我们描述了一个快速可靠和简单的程序来确定的最低温度时大鼠或小鼠显示nocifensive的的行为,<em>即</em>“<em>热痛觉阈值</em>(梯恩梯)。这种方法适用于任何一个缓慢增长的热刺激,使精确,重现性与最低估计TNTs之应力的动物。

Abstract

痛性糖尿病神经病变(PDN)的特点是由伤害性刺激的敏感性增加, 即痛觉过敏 ,正常无害的刺激过敏异常性疼痛 。痛觉过敏和异常性疼痛研究已经在许多不同的啮齿动物模型的糖尿病2。然而,由于Bölcskei ,在动物模型中的“ 痛苦 ”的决心表示挑战,由于其主观性质3。此外,使用传统的方法来确定有害的热刺激的行为反应通常缺乏重复性和药物敏感性3。例如,采用热板法Ankier 4,退缩,撤回和/或任何后肢和/或前爪子舔量化为恒高(52-55℃)热刺激反射潜伏期。然而,热刺激痛觉过敏的动物不再现重新显示的差异柔性延迟使用这些超阈值温度3,5。由于最近Bölcskei 6所述的方法,这里所描述的程序允许的决心,在小鼠和大鼠的热痛觉阈值的快速,灵敏,重现性好(TNTS)。该方法使用缓慢增加热刺激,主要应用于小鼠/大鼠足底表面的皮肤。方法是抗-痛觉特别敏感,学习期间如痛觉过敏状态的PDN。娄的程序的基础上详细公布的,由Almási 5和Bölcskei 3。这里所描述的程序,已批准的实验动物护理和使用委员会(LACUC),莱特州立大学。

Protocol

小鼠和大鼠的TNTs之决心通过增量热板镇痛米iHPAM,公司生命科学印地安人条约理事会(伍德兰希尔斯,CA)]。该设备由几个部分组成:加热系统下方和有机玻璃观察室以上的铝板(10×20厘米);热控制单元,数据采集软件(印地安人条约理事会第#软系列8),PC(个人计算机)和脚踏板,遥控启动,停止或重置控制的单位。供热系统还允许开始/停止/手动重新加热过程中,通过在设备前面的键盘。?…

Discussion

同样经典热板测试,以量化的热痛觉过敏4,13,这里描述痛觉检测允许快速和可靠的方法来量化nocifensive在大鼠和小鼠的行为。然而,相反的经典试验,热板的增量方法非侵入性的,几乎无压力。虽然一些限制是有必要进行测试( 动物的,必须是在观察室),大鼠或小鼠习惯于类似的地区( 例如 ,房屋笼)。

所描述的条件下,正常的年轻成年大鼠和小…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国糖尿病协会(ADA),格兰特JF1-10-14(MDiF)。我们要感谢在华盛顿州立大学的实验室动物资源的人员。作者感谢援助尼尔·佩顿,博士从数据统计分析

Materials

Name Company Catalogue number
Incremental Hot-Plate Analgesia Meter IITC Inc. Life Science Part #PE34
Soft Series 8 IITC Inc. Life Science Part # Series8
Streptozotocin Calbiochem 572201

Referencias

  1. Baron, R. Peripheral neuropathic pain: From mechanisms to symptoms. Clin. J. Pain. 16, S12-S20 (2000).
  2. Calcutt, N. A., Jorge, M. C., Yaksh, T. L., Chaplan, S. R. Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: Effects of insulin, aldose reductase inhibition and lidocaine. Pain. 68, 293-299 (1996).
  3. Bolcskei, K., Petho, G., Szolcsanyi, J. Noxious heat threshold measured with slowly increasing temperatures: Novel rat thermal hyperalgesia models. Methods Mol. Biol. 617, 57-66 (2010).
  4. Ankier, S. I. New hot plate tests to quantify antinociceptive and narcotic antagonist activities. Eur. J. Pharmacol. 27, 1-4 (1974).
  5. Almasi, R., Petho, G., Bolcskei, K., Szolcsanyi, J. Effect of resiniferatoxin on the noxious heat threshold temperature in the rat: A novel heat allodynia model sensitive to analgesics. Br. J. Pharmacol. 139, 49-58 (2003).
  6. Bolcskei, K., Horvath, D., Szolcsanyi, J., Petho, G. Heat injury-induced drop of the noxious heat threshold measured with an increasing-temperature water bath: A novel rat thermal hyperalgesia model. Eur. J. Pharmacol. 564, 80-87 (2007).
  7. Chesler, E. J., Wilson, S. G., Lariviere, W. R., Rodriguez-Zas, S. L., Mogil, J. S. Identification and ranking of genetic and laboratory environment factors influencing a behavioral trait, thermal nociception, via computational analysis of a large data archive. Neurosci. Biobehav. Rev. 26, 907-923 (2002).
  8. Langford, D. J., Crager, S. E., Shehzad, Z., Smith, S. B., Sotocinal, S. G., Levenstadt, J. S., Chanda, M. L., Levitin, D. J., Mogil, J. S. Social modulation of pain as evidence for empathy in mice. Science. 312, 1967-1970 (2006).
  9. Hunt, S. P., Koltzenburg, M. . The neurobiology of pain. , (2005).
  10. Willis, W. D. . The pain system : The neural basis of nociceptive transmission in the mammalian nervous system. , (1985).
  11. Calcutt, N. . Modeling diabetic sensory neuropathy in rats. In: Methods in molecular medicine. Pain research: Methods and protocols. , (2004).
  12. Bars, D. L. e., Gozariu, M., Cadden, S. W. Animal models of nociception. Pharmacol. Rev. 53, 597-652 (2001).
  13. Shaikh, A. S., Somani, R. S. Animal models and biomarkers of neuropathy in diabetic rodents. Indian J. Pharmacol. 42, 129-134 (2010).
  14. Hargreaves, K., Dubner, R., Brown, F., Flores, C., Joris, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 32, 77-88 (1988).
  15. Hardy, J. D. Method for the rapid measurement of skin temperature during exposure to intense thermal radiation. J. Appl. Physiol. 5, 559-566 (1953).
  16. Sumino, R., Dubner, R., Starkman, S. Responses of small myelinated &quot;warm&quot; fibers to noxious heat stimuli applied to the monkey’s face. Brain Res. 62, 260-263 (1973).
  17. Hammond, D. L., Ruda, M. A. Developmental alterations in thermal nociceptive threshold and the distribution of immunoreactive calcitonin gene-related peptide and substance p after neonatal administration of capsaicin in the rat. Neurosci. Lett. 97, 57-62 (1989).

Play Video

Citar este artículo
Alshahrani, S., Fernandez-Conti, F., Araujo, A., DiFulvio, M. Rapid Determination of the Thermal Nociceptive Threshold in Diabetic Rats. J. Vis. Exp. (63), e3785, doi:10.3791/3785 (2012).

View Video