Summary

鞭虫感染muris:在肠道内的2型免疫和炎症模型

Published: May 24, 2011
doi:

Summary

鞭muris感染肠道模型是一种Th2型免疫抗小鼠Th2反应产生保护和易感小鼠产生一种病态的Th1反应。

Abstract

鞭muris是一个自然的小鼠的病原体和鞭虫物种感染人类和牲畜 1的生物学和抗原性相似。感染性虫卵经口灌胃,在远端小肠孵化,侵入肠上皮细胞(IECS),该行盲肠和近端结肠隐窝和成熟后的蠕虫释放到环境中鸡蛋1。这个模型是一个功能强大的工具来检查因素控制的CD4 +辅助性T细胞(TH)的激活,以及在肠上皮细胞的变化。免疫反应的抗近交系C57BL / 6和BALB / C,如发生的特点,是由Th2细胞极化的细胞因子(IL – 4,IL – 5和IL – 13)和驱逐的蠕虫病毒,而Th1相关的细胞因子(IL -12,IL – 18,IFN -γ)促进在遗传易感性的AKR / J 小鼠 2-6的慢性感染。 Th2细胞因子,促进生理肠道微环境的变化,包括IECS的快速周转,杯状细胞的分化,招聘和上皮通透性和平滑肌收缩,所有这一切都已经在蠕虫驱逐7-15牵连的变化。在这里,我们详细为传播鞭muris可以在随后的实验中使用的鸡蛋的的协议。我们还提供了为感染后的分析建议的样品实验收获。总体而言,该协议将提供的基本工具的研究人员,执行鞭muris小鼠感染模型,它可以用来解决有关的问题在胃肠道以及免疫效应功能的IECS钍倾向。

Protocol

1。传播鞭muris蛋要生成新的批次的鞭muris蛋,感染20-30免疫缺陷小鼠(如NOD.Cg Prkdc SCID IL2RG tm1Wjl / SZJ(NSG)或129S6/SvEvTac-Rag2 tm1Fwa(RAG2 – / – ))或遗传易感性小鼠(如AKR / J)6-8周约300鞭灌胃muris鸡蛋。 CO 2窒息牺牲后32-35天的小鼠。 揭露鼠标的腹侧方和湿用70%乙醇的腹部。 使用镊子把握腹部皮肤,使一个小切口,?…

Discussion

该协议的细节了一个标准的高剂量急性鞭muris感染研究者的要求,可以修改。例如,老鼠可以牺牲和组织在不同的日子里收获。要确定小鼠已成功建立了完整的蠕虫负担,他们可以被牺牲的第14天,在这一点所有小鼠,应随身携带了约200蠕虫的负担。也可被感染小鼠的32天检测到任何蠕虫将达到成熟阶段,并会维持其生命期限的主机。此外,该协议可以适应慢性鞭虫muris感染模型。要?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作是支持的加拿大卫生研究院(MSH – 95368,澳门币89773和MOP – 106623,以锆石)和加拿大创新基金会。 SCM是一个胃肠病学博士后CIHR /加拿大协会的收件人。锆石是一种新CIHR调查。

Materials

Name of the reagent Company Catalogue number Comments
Animal Feeding Needles (18 x 1½”) Popper 7912  
Smooth curved Forceps Roboz RS-5047  
DMEM Gibco 11965  
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) Jackson Laboratories 005557 These are the mice we used, however, any immunodeficient mice or susceptible strain should work.
RNAlater Qiagen 76104  
2 ml tubes Axygen MCT-200-C  
15 ml tubes Falcon 352096  
6 well plates Falcon 353046  
Paraformaldehyde Electron Microscopy Science 15710  
α-RELMβ antibody PeproTech Inc 0694270Rb  

Referencias

  1. Cliffe, L. J., Grencis, R. K. The Trichuris muris system: a paradigm of resistance and susceptibility to intestinal nematode infection. Adv. Parasitol. 57, 255-307 (2004).
  2. Else, K. J., Finkelman, F. D., Maliszewski, C. R., Grencis, R. K. Cytokine-mediated regulation of chronic intestinal helminth infection. J. Exp. Med. 179, 347-351 (1994).
  3. Bancroft, A. J., Grencis, R. K. Th1 and Th2 cells and immunity to intestinal helminths. Chem. Immunol. 71, 192-208 (1998).
  4. Bancroft, A. J., McKenzie, A. N., Grencis, R. K. A critical role for IL-13 in resistance to intestinal nematode infection. J. Immunol. 160, 3453-3461 (1998).
  5. Helmby, H., Takeda, K., Akira, S., Grencis, R. K. Interleukin (IL)-18 promotes the development of chronic gastrointestinal helminth infection by downregulating IL-13. J. Exp. Med. 194, 355-364 (2001).
  6. Owyang, A. M. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J. Exp. Med. 203, 843-849 (2006).
  7. Artis, D. RELMβ/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc. Natl. Acad. Sci. U. S. A. 101, 13596-13600 (2004).
  8. Datta, R. Identification of novel genes in intestinal tissue that are regulated after infection with an intestinal nematode parasite. Infect. Immun. 73, 4025-4033 (2005).
  9. Cliffe, L. J. Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. Science. 308, 1463-1465 (2005).
  10. Artis, D. New weapons in the war on worms: identification of putative mechanisms of immune-mediated expulsion of gastrointestinal nematodes. Int. J. Parasitol. 36, 723-733 (2006).
  11. Finkelman, F. D. Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models. Annu. Rev. Immunol. 15, 505-533 (1997).
  12. Grencis, R. K. Enteric helminth infection: immunopathology and resistance during intestinal nematode infection. Chem. Immunol. 66, 41-61 (1997).
  13. Khan, W. I. Modulation of intestinal muscle contraction by interleukin-9 (IL-9) or IL-9 neutralization: correlation with worm expulsion in murine nematode infections. Infect. Immun. 71, 2430-2438 (2003).
  14. Khan, W. I., Blennerhasset, P., Ma, C., Matthaei, K. I., Collins, S. M. Stat6 dependent goblet cell hyperplasia during intestinal nematode infection. Parasite Immunol. 23, 39-42 (2001).
  15. Akiho, H., Blennerhassett, P., Deng, Y., Collins, S. M. Role of IL-4, IL-13, and STAT6 in inflammation-induced hypercontractility of murine smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 282, 226-2232 (2002).
  16. Kopper, J. J., Mansfield, L. S. Development of improved methods for delivery of Trichuris muris to the laboratory mouse. Parasitol. Res. 107, 1103-1113 (2010).
  17. Bancroft, A. J., Else, K. J., Grencis, R. K. Low-level infection with Trichuris muris significantly affects the polarization of the CD4 response. Eur. J. Immunol. 24, 3113-3118 (1994).

Play Video

Citar este artículo
Antignano, F., Mullaly, S. C., Burrows, K., Zaph, C. Trichuris muris Infection: A Model of Type 2 Immunity and Inflammation in the Gut. J. Vis. Exp. (51), e2774, doi:10.3791/2774 (2011).

View Video