Source: Ravi, B. et al., Ratiometric Calcium Imaging of Individual Neurons in Behaving Caenorhabditis Elegans. J. Vis. Exp. (2018).
This video demonstrates a technique for calcium imaging in individual neurons of behaving Caenorhabditis elegans using genetically encoded fluorescent reporter proteins. It outlines the steps involved in imaging worm movement and measuring reporter fluorescence ratios from neurons to correlate intracellular calcium levels with neuronal activity and behavioral changes during egg-laying.
1. Strains, Culture Media, and Mounting of Animals
2. Hardware and Instrumentation Setup
3. Ratiometric Ca2+ Imaging and Behavior Recording
Figure 1. C. elegans mounting technique for high-resolution imaging of egg-laying circuit activity and behavior. Top, the final mount from the side. Bottom, the final mount as viewed through the bottom of the large coverslip. Arrows indicate OP50 bacterial food, C. elegans worms, and eggs, sandwiched between the NGM agar chunk and the large 24 mm x 60 mm coverslip.
Figure 2. Widefield ratiometric Ca2+ imaging and behavior recording on an inverted epifluorescence microscope. (A) Worm position and behavior is captured in brightfield via a 20x (0.8 NA) Plan-Apochromat objective using infrared (750-790 nm) light (purple arrows) emitted from a halogen lamp through the NGM chunk. A joystick and motorized stage controller are used to maintain the worm in the field of view during recording. Stage position (Δx, Δy) is sent to the PC by the serial port. GCaMP5 and mCherry proteins expressed in the worm are excited using 470 nm (blue arrows) and 590 nm (yellow arrows) Light Emitting Diodes (LED). Emitted GCaMP5 (green arrows) and mCherry (orange arrows) fluorescence, along with the infrared light, passes through a multi-band dichroic mirror (see Table of Materials). An 80/20 beam-splitter sends 20% of the light through a 0.63x demagnifer for capture on an infrared-sensitive CMOS camera (purple arrow). The remaining 80% of the light is sent through the side-port of the microscope to an image splitter that separates the GCaMP5 and mCherry fluorescence onto separate halves of an sCMOS camera while removing infrared brightfield light. Data from both cameras are transferred to a PC via USB3 cables. The trigger ports from the fluorescence sCMOS camera (blue) are used to send +5V TTL triggers to the LED illumination system, the infrared brightfield CMOS camera, and the Digital Acquisition Device (DAQ). (B) Trigger 3 output TTL signals are detected by the DAQ at digital pin #8 and sent to the PC through a USB connection. These digital inputs trigger a 'where XY' serial command from a Bonsai software script (XY-stage-final), which reads the X and Y stage position for each GCaMP5/mCherry fluorescence/infrared image captured.
Figure 3: Layout of the Bonsai serial-stage communication script XY-stage-final. The top DigitalInput node (pink) reads TTL triggers coming into pin #8 of the DAQ. For each positive TTL voltage (green), the DAQ makes a timestamp (blue) and writes a 'Where XY?' string (pink) to the stage controller via the serial port (grey). The SerialStringRead node (pink) reads the X and Y coordinate response from the stage controller. This string is then converted into microns and separated into X and Y stage coordinates. Finally, these four streams are combined using a zip node (blue), and a four-column.csv file is written: a frame count of the TTL signals received (Range node, pink), the X and Y coordinates, and the interval between subsequent timepoints (typically ~ 50 ms when recording at 20 Hz).
The authors have nothing to disclose.
C. elegans growth, cultivation, and mounting | |||
Escherichia coli bacterial strain, OP50 | Caenorhabditis Genetic Center | OP50 | Food for C. elegans. Uracil auxotroph. E. coli B. Biosafety Level 1 |
HSN GCaMP5+mCherry worm strain | Caenorhabditis Genetic Center | LX2004 | Integrated transgene using nlp-3 promoter to drive GCaMP5 and mCherry expression in HSN. Full genotype: vsIs183 [nlp-3p::GCaMP5::nlp-3 3'UTR + nlp-3p::mCherry::nlp-3 3'UTR + lin-15(+)], lite-1(ce314), lin-15(n765ts) X |
lite-1(ce314), lin-15(n765ts) mutant strain for transgene preparation | author | LX1832 | Strain for recovery of high-copy transgenes after microinjection with pL15EK lin-15(n765ts) rescue plasmid. Also bears the linked lite-1(ce314) mutation which reduces blue-light sensitivity. Available from author by request |
pL15EK lin-15a/b genomic rescue plasmid | author | pL15EK | Rescue plasmid for recovery of transgenic animals after injection into LX1832 lite-1(ce314), lin-15(n765ts) X strain. Available from author by request |
pKMC299 plasmid | author | pKMC299 | Plasmid for expression of mCherry in the HSNs from the nlp-3 promoter. Has nlp-3 3' untranslated region |
pKMC300 plasmid | author | pKMC300 | Plasmid for expression of GCaMP5 in the HSNs from the nlp-3 promoter. Has nlp-3 3' untranslated region |
Potassium Phosphate Monobasic | Sigma | P8281 | For preparation of NGM plates |
Potassium Phosphate Dibasic | Sigma | P5655 | For preparation of NGM plates |
Magnesium Sulfate Heptahydrate | Amresco | 662 | For preparation of NGM plates |
Calcium Chloride Dihydrate | Alfa Aesar | 12312 | For preparation of NGM plates |
Peptone | Becton Dickinson | 211820 | For preparation of NGM plates |
Sodium Chloride | Amresco | 241 | For preparation of NGM plates |
Cholesterol | Alfa Aesar | A11470 | For preparation of NGM plates |
Agar, Bacteriological Type A, Ultrapure | Affymetrix | 10906 | For preparation of NGM plates |
60 mm Petri dishes | VWR | 25384-164 | For preparation of NGM plates |
24 x 60 mm micro cover glasses, #1.5 | VWR | 48393-251 | Cover glass through which worms are imaged |
22 x 22 mm micro cover glasses, #1 | VWR | 48366-067 | Cover glass that covers the top of the agar chunk |
Stereomicroscope with transmitted light base | Leica | M50 | Dissecting microscope for worm strain maintenance, staging, and mounting |
Platinum iridium wire, (80:20), 0.2mm | ALFA AESAR | AA39526-BW | For worm transfer |
Calcium imaging microscope | |||
Anti-vibration air table | TMC | 63-544 | Micro-g' Lab Table 30" x 48" anti-vibration table with 4" CleanTop M6 on 25mm top |
Inverted compound microscope | Zeiss | 431007-9902-000 | Axio Observer.Z1 inverted microscope |
Sideport L80/R100 (3 position) | Zeiss | 425165-0000-000 | To divert 20% of output to brightfield (CMOS) camera, 80% to fluorescence (sCMOS) camera |
Tilt Back Illumination Carrier | Zeiss | 423920-0000-000 | For infrared/behavior imaging |
Lamphousing 12V/100W w/ Collector | Zeiss | 423000-9901-000 | For infrared/behavior imaging |
Halogen lamp 12V/100W | Zeiss | 380059-1660-000 | For infrared/behavior imaging. White-light LEDs do not emit significant infrared light, so they will not allow brightfield imaging after the infrared bandpass filter |
32 mm Infrared bandpass filter (750-790 nm) for Halogen lamp | Zeiss | 447958-9000-000 | BP 750-790; DMR 32mm, for infrared illumination for brightfield and behavior |
6-filter Condenser Turret (LD 0.55 H/DIC/Ph), Motorized | Zeiss | 424244-0000-000 | For infrared/behavior imaging |
Condenser & Shutter | Zeiss | 423921-0000-000 | For infrared/behavior imaging |
Binocular eyepiece with phototube for infrared CMOS camera | Zeiss | 425536-0000-000 | For infrared/behavior imaging |
Eyepiece 10x, 23mm | Zeiss | 444036-9000-000 | For worm localization on the agar chunk |
C-Mount Adapter 2/3" 0.63x demagnifier | Zeiss | 426113-0000-000 | Mount for infrared CMOS camera |
CMOS camera for infrared brightfield and behavior (1" sensor) | FLIR (formerly Point Grey Research) | GS3-U3-41C6NIR-C | Camera for brightfield imaging |
USB 3.0 Host Controller Card | FLIR (formerly Point Grey Research) | ACC-01-1202 | Fresco FL1100, 4 Ports |
8 pins, 1m GPIO Cable, Hirose HR25 Circular Connector | FLIR (formerly Point Grey Research) | ACC-01-3000 | Cable for TTL triggering. The green wire connects to GPIO3 / Pin 4 and the brown wire connects to Ground / Pin 5 |
Plan-Apochromat 20x/0.8 WD=0.55 M27 | Zeiss | 420650-9901-000 | Best combination of magnification, numerical aperture, and working distance |
6-cube Reflector Turret, Motorized | Zeiss | 424947-0000-000 | For fluorescence imaging |
Fluorescence Light Train, Motorized | Zeiss | 423607-0000-000 | For fluorescence imaging |
Fluorescence Shutter | Zeiss | 423625-0000-000 | For fluorescence imaging |
GFP and mCherry dual excitation and emission filter cube (for microscope) | Zeiss | 489062-9901-000 | FL Filter Set 62 HE BFP+GFP+HcRed for fluorescence imaging |
LED illumination system | Zeiss | 423052-9501-000 | Triggerable Colibri.2 LED system for fluorescent illumination |
GFP LED module (470 nm) | Zeiss | 423052-9052-000 | Colibri.2 LED for GFP fluorescence excitation |
mCherry LED module (590 nm) | Zeiss | 423052-9082-000 | Colibri.2 LED for mCherry fluorescence excitation |
Iris stop slider for incident-light equipment | Zeiss | 000000-1062-360 | Field aperture iris to limit LED illumination to the camera field of view |
C-Mount Adapter 1" 1.0x | Zeiss | 426114-0000-000 | Adapter for image-splitter and sCMOS fluorescence camera |
Image splitter | Hamamatsu | A12801-01 | Gemini W-View, other image splitters may be used, but they may not be optimized for the large sensor size of the sCMOS cameras |
GFP / mCherry dichroic mirror (image splitter) | Semrock | Di02-R594-25×36 | Splitting GCaMP5 from mCherry and infrared signals |
GFP emission filter (image splitter) | Semrock | FF01-525/30-25 | Capturing GCaMP5 fluorescence |
mCherry/ emission filter (image splitter) | Semrock | FF01-647/57-25 | This filter is necessary to exclude the infrared light used for brightfield imaging |
sCMOS camera for fluorescence (1" sensor) | Hamamatsu | A12802-01 / C11440-22CU | Orca FLASH 4.0 V2. Newer models allow for separate image acquisition settings on separate halves of the sensor, allowing acquisition of two-channel images in combination with an image splitter |
Motorized XY Stage | Märzhäuser | SCAN IM 130 x 100 | Stage movement; the XY resolution of this stage is 0.2µm per step |
XY Stage controller with joystick | LUDL | MAC6000, XY joystick | Manual tracking of worms. MAC6000 controller should be connected to the PC through the serial (RS-232) port configured to 115200 baud |
Digital Acquisition board (DAQ) | Arduino | Uno | Receiving TTL triggers from sCMOS camera. The Uno should be loaded with the standard Firmata package, and the computer USB port configured to 57600 baud |
BNC Male to BNC Male Cable – 6 ft | Hosa Technology | HOBB6 | BNC connectors for TTL triggering |
Gold-Plated BNC Male to SMA male coaxial cable (8.8") | uxcell | 6.08642E+11 | To connect the fluorescence camera trigger outputs |
BNC turn head adapter | Hantek | RRBNCTH21 | BNC to Banana Plug Adapter (4mm) |
BNC female to female connector | Diageng | 20130530009 | Female to female BNC adapter to connect the BNC output from the camera to the Banana Plug |
Solderless flexible breadboard jumper wires | Z&T | GK1212827 | To connect the BNC trigger outputs to the Arduiono DAQ. Male to male. |
High performace workstation | HP | Z820 | Windows 7, 64GB RAM, Dual Xeon processor, solid state C: drive, serial (RS-232) port, multiple PCIe3 slots for ethernet connectivity, USB 3.0 cards, and additional solid state drives |
M.2 Solid state drive | Samsung | MZ-V5P512BW | High-speed streaming and analysis of image data |
M.2 Solid state drive adapter for workstations | Lycom | DT-120 | M.2 to PCIe 3.0 4-lane adapter |
Network attached storage | Synology | DS-2415+ | Imaging data storage and analysis |
Hard disk drives | Western Digital | WD80EFZX | RED 8 TB, 5400 RPM Class SATA 6 Gb/s 128MB Cache 3.5 Inch. Storage of imaging data (10 drives + 2 drive redundancy) |
Software | |||
Fluorescence Acquisition | Hamamatsu | HCImage DIA | Recording of two channel (GCaMP5 and mCherry) fluorescence image sequences at 20 fps |
Brightfield Acquisition | FLIR (formerly Point Grey Research) | Flycapture | Recording of brightfield JPEG image sequences |
Stage Serial Port Reader | Bonsai | https://bitbucket.org/horizongir/bonsai | Facilitates tracking of worms during behavior |
LED controller software | Zeiss | Micro Toolbox Test 2011 | To set up the intensity and trigger inputs for the different LEDs in the Colibri.2 unit |
ImageJ | NIH | https://imagej.net/Fiji/Downloads | Simple review of image sequences and formatting changes for import into Ratiometric Quantitation software |
Excel | Microsoft | 2002984-001-000001 | For generating subsets of comma-separated value data from Volocity for MATLAB analysis |
Peak Finding | MATLAB | R2017a | Script used for Ratio peak feature calculations |
Ratiometric Quantitation | Perkin Elmer | Volocity 6.3 | Facilitates calculation of ratiometric image channels, image segmentation for object finding, and ratio measurement of found objects |
Scripts | |||
AnalyzeGCaMP_2017.m | MATLAB | Mean Ratio and XY centroid script | Analyzes a ratiometric output in .csv format, consolidating objects and centroid positions, calculating ratio changes (ΔR/R), identifying peaks and peak features, and writing plots (with and without annotated peaks) in postscript format. For matrix file import, the script will output data into three folders: analyzed, peaks, and traces. 'Analyzed' output is a matrix file of the consolidated objects with six columns (units): time (s), area (square microns), ratio, X centroid (microns), Y centroid (microns), and ΔR/R. 'Peaks' output is a matrix file of the timepoints of found peaks, the amplitude (in ΔR/R), the peak width (s), and the prominance of the peak. 'Traces' output are postscript files of calcium traces. |
XY-stage-final.bonsai | Bonsai | TTL-triggered DAQ and stage position serial port reader | Records X and Y stage position (in microns) when the attached Arduino receives a positive TTL signal from sCMOS camera during frame exposure. Script writes a .csv file with four columns: frame number, X position (microns), Y position (microns), and the time elapsed between frames (typically ~50 msec when recording at 20 fps). X and Y stage position from this output (columns 2 and 3, respectively) are added to the X and Y centroid positions from the AnalyzeGCaM |