Science Education
>

Protocol for the Evaluation of MRI Artifacts Caused by Metal Implants to Assess the Suitability of Implants and the Vulnerability of Pulse Sequences

LEHRERVORBEREITUNG
KONZEPTE
SCHÜLERPROTOKOLL
JoVE Journal
Ingenieurwesen
Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich.  Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
JoVE Journal Ingenieurwesen
Protocol for the Evaluation of MRI Artifacts Caused by Metal Implants to Assess the Suitability of Implants and the Vulnerability of Pulse Sequences

1. Phantom Preparation

  1. Determine the implant volume (e.g., by using the water displacement method).
    NOTE: The volume of the CCT-T sample and the Z-T sample measured 0.65 mL and 0.73 mL, respectively.
  2. Fix the implant position in the middle of a non-ferromagnetic, plastic, waterproof box by using a thin thread. Use a box that is larger than the expected MRI artifacts.
    NOTE: If no rough estimates of the artifact volumes of the implant and/or pulse sequence of interest are available, perform a test scan by placing the phantom in a box, approximately 10x larger than the phantom, filled with water. The artifact volumes in this study ranged from 7.3 mL (for the CCT-T sample) and 0.09 mL (for the Z-T sample).
  3. Carefully melt a mixture of semisynthetic fat (58.8%), water (40%), and macrogol-8-stearate (1.2%), using a water bath at 50 °C.
    NOTE: For the samples in this study, we used a 500 mL mixture for the embedding of each sample.
    1. When the mixture becomes fluid, stop heating and start with slow stirring, and stop heating. Ensure that there is no separation of the fat and water phases.
  4. As soon as clotting begins, slowly start embedding the implant with the mixture. For this, pour the embedding mixture slowly into the phantom box with the implant.
    NOTE: Pouring must be performed slowly to avoid air inclusion.
  5. Place the phantom box with the embedded implant into the refrigerator at 4 °C overnight for desiccation. The next day, remove any residual fluid parts by decantation.

2. MRI Examination

  1. Place the phantom (box with the embedded implant) in the MRI in the same orientation as in the in vivo situation. Position the middle of the phantom in the isocenter of the MRI.
  2. For measurements, use a coil which allows for a homogeneous signal distribution within the imaging volume without severe and obvious signal drops (e.g., a head coil).
  3. When planning the MRI scans at the MRI console, ensure that the phantom box, including some air at the edges of the box, is within the imaging volume.
  4. Next, perform the MRI examination.

3. Image Analysis and Post-processing

  1. Export the images without any loss of quality (e.g., by compression) from the MRI console (e.g., using the DICOM format). Import the images in an MRI post-processing software which allows for placing the region of interests (ROI), evaluating ROI signal intensities, a threshold-based segmentation, and a quantification of the segmentation volumes (see Table of Materials).
  2. To define the threshold for pile-up artifacts and check for a homogeneous signal distribution within the imaging volume, place lines perpendicular to each other and adjacent to the outer border of the visible artifact on the slice with the maximum artifact size (Figure 1a).
    NOTE: Pile-up artifacts are displacement artifacts, presenting with areas with artificially high signal intensities. They occur in the slice direction and the readout direction.
    1. Place a background ROI (ROIBackground) with 10 mm in diameter outside each of the four intersection points (Figure 1a). Place the lines and the background regions of interests using the segmentation editor.
    2. Measure the mean signal intensity and standard deviation (SD) of all voxels within these 4 ROIBackground values and for each ROIBackground separately. Use the tool Material Statistics in the project view.
    3. Ensure that the mean signal intensity of each ROI­Background is within the range of ± 1.5 SD of the mean signal of each of the other 3 counterparts to guarantee a homogeneous signal distribution.
    4. Calculate the threshold for pile-up artifacts by adding 3 SD of ROIBackground to the mean signal intensity of all voxels of these 4 ROIBackground values. Perform a semiautomatic threshold-based segmentation of pile-up artifacts by selecting all voxels with the signal intensities larger than the threshold adjacent to the signal loss artifact in every slice. Use the masking tool of the segmentation editor to visualize the predefined signal intensity range and restrict the segmentation to it.
  3. To define the threshold for signal loss artifacts, place 4 regions of interests (ROIs) in air-containing regions (ROIAir; each 10 mm in diameter) at the corners of the phantom box and measure the mean signal intensity and SD of all voxels within these 4 ROIAir as described in step 3.2, using the segmentation editor and "Material Statistics", respectively.
    NOTE: Signal loss artifacts present with voxels having artificial low signal intensities. They are caused by dephasing and displacement artifacts.
    1. Place an ROI in the core of the signal loss artifact (ROICore) defined by the largest connected area of low signal intensities (Figure 1a). Manually increase the size of the ROICore until the largest possible size within the signal loss artifact whose mean signal intensity is lower than the mean ROIAir + 3x of the respective SD is found. Finally, measure the mean signal intensity and SD of the ROICore.
    2. Calculate the signal intensity threshold for signal loss artifacts by adding 3 SD of the ROICore to the mean of the ROICore. Perform a semiautomatic threshold-based segmentation of signal loss artifacts by selecting all voxels connected to the ROICore with signal intensities below the threshold.
    3. Use the masking tool of the segmentation editor to visualize the predefined signal intensity range and restrict the segmentation to it. If possible, use the "Fill" function in the tap "Selection" of the segmentation editor to include all voxels within the segmentation that are not yet selected. If applicable, manually add the additional unequivocal signal loss artifacts to the segmentation.
  4. Subtract the physical implant volume from the calculated artifact volume to obtain the true artifact volume. Repeat the analysis at least 3x. A time interval of at least two weeks should separate the multiple reads to exclude a learning bias.

Protocol for the Evaluation of MRI Artifacts Caused by Metal Implants to Assess the Suitability of Implants and the Vulnerability of Pulse Sequences

Learning Objectives

With the above-mentioned protocol, we evaluated the artifact volume of 2 different dental implants made of Titanium (T; see the Table of Materials) supporting different crowns [porcelain-fused-to-metal non-precious alloy (CCT-T) and monolithic zirconia (Z-T); Figure 1b and 1c]. The CCT-T sample represents a highly paramagnetic material composition predicting large artifacts (Cobalt 61%, Chrome 21%, and Tungsten 11%; CCT). The crown material of the Z-T sample represents a low paramagnetic material (Zirconia 92%; Z). Furthermore, four different, non-fat-saturated, T2-weighted sequences were evaluated to compare their vulnerability to metal artifacts. Specifically, the techniques of multiple slab acquisition with a view-angle-tilting gradient based on a sampling perfection with application-optimized contrasts using different flip angle evolutions (MSVAT-SPACE), slice encoding for metal artifact correction (SEMAC), and their conventional counterparts SPACE and turbo spin echo (TSE) were evaluated (see Table 1 for the detailed sequence parameters). MRI scans were performed on a 3T MRI system (see the Table of Materials) and a 16-channel multipurpose surface coil was used. The variation of the pulse sequence parameters has a strong impact on the artifact size. Thus, pulse sequence parameters were chosen as close as possible to those used in the in vivo dental MRI scans to increase the transferability of the results. The analysis was performed 3x by two independent raters. For multiple comparisons, a two-way analysis of variances and post hoc Tukey tests were used.

The data analysis reveals differences between both samples and the applied sequences. In all sequences, the combined artifact volumes (the sum of the signal loss and pile-up) of the CCT-T sample were larger compared to the Z-T sample (P <0.001; Figure 2 and Figure 3). Within the same sequence, the artifact volume of the CCT-T sample was 19.3x (SEMAC) to 39.6x (MSVAT-SPACE) larger than the artifact volume of the Z-T counterpart.

The choice of pulse sequence had a significant impact on the artifact volume as well (Figure 2 and Figure 3). Regarding the CCT-T sample, the smallest artifact volumes were observed for TSE and SEMAC, and the largest artifacts for SPACE (P <0.001). In addition, MSVAT-SPACE significantly reduced the artifact volume compared to SPACE (P <0.001; 3.8 vs. 7.3 mL). In contrast, no significant differences were observed between MSVAT-SPACE, TSE, and SEMAC for the Z-T sample. The artifact volume for Z-T was largest in SPACE and was significantly reduced by MSVAT-SPACE (P <0.05; 0.26 vs. 0.1 mL).

Figure 1
Figure 1: ROI positioning and implant samples. (a) This panel shows a typical positioning of the regions of interests (ROIs) for measuring the thresholds for pile-up artifacts and signal distribution (ROIB = ROIBackground) and signal loss artifacts (ROIA = ROIAir; ROIC = ROICore). The blue contour resembles the result of the semiautomatic segmentation for signal loss artifacts within that slice. The small red areas correspond to the result of pile-up artifacts. (b and c) These panels show images of used dental implants supporting different single crowns. Cobalt-Chromium-Tungsten-Titanium (CCT-T); Zirconia-Titanium (Z-T). Please click here to view a larger version of this figure.

Figure 2
Figure 2: Artifact volume measurements. (a and b) These are bar graphs showing the mean values with the standard deviations of the three-dimensional artifact volume of the entire implant samples for all 4 evaluated sequences after subtracting the physical implant volume. If applicable, separate standard deviation error bars are given for signal loss and pile-up artifacts. * P ≤ 0.05; ** P≤ 0.001 Please click here to view a larger version of this figure.

Figure 3
Figure 3: Appearance of artifacts. These panels render the artifact volumes of the entire implants (upper row). The blue colored areas represent signal loss artifacts and the red colored areas represent pile-up artifacts. The panels show the colored source images (lower row) for all evaluated T2-weighted sequences. Panel (a) is of the Cobalt-Chromium-Tungsten-Titanium (CCT-T) sample and panel (b) is of the Zirconia-Titanium (Z-T) sample. Please click here to view a larger version of this figure.

Sequence TR/TE
[ms]
Voxel size
[mm3]
FOV
[mm2]
Matrix Readout
Bandwidth
[Hz/Px]
Slices Slice
encoding 

steps or
oversampling

[%]
VAT Time
[min:sec]
SPACE 2,500/131 0.55 x 0.55 x 0.55 140 x 124 256 x 256 501 72 55.6 No 14:02
MSVAT-SPACE 2,500/199 0.55 x 0.55 x 0.55 140 x 84 256 x 256 528 72 55.6 Yes 6:04
TSE 5,100/44 0.59 x 0.59 x 1.5 150 x 150 256 x 256 592 25 No No 3:36
SEMAC 5,100/45 0.59 x 0.59 x 1.5 150 x 150 256 x 256 592 25 4 Yes 6:19

Table 1: Parameters of all used sequences.

List of Materials

Aqua B. Braun Ecotainer B. Braun Melsungen AG, Melsungen, Germany
Semisynthetic fat: Witepsol W25 Caelo Caesar & Loretz GmbH, Hilder, Germany 4051
Macrogol-8-stearate Caelo Caesar & Loretz GmbH, Hilder, Germany 3023
Plastic box: not specified
Implants: Nobel Replace Nobel Biocare, Zürich, Switzerland
Water bath Haake S5P Thermo Scientific, Waltham, MA, USA
Measuring cylinder Blaubrand Eterna, Class A, Boro 3.3 BRAND GmbH + Co Kg, Wertheim, Germany 32708
Coil: Variety Noras MRI products GmbH, Höchberg, Germany
MRI: Magnetom Trio Siemens Healthcare GmbH, Erlangen, Germany
Postprocesing software: Amira 6.4 Thermo Scientific, Waltham, MA, USA

Lab Prep

As the number of magnetic resonance imaging (MRI) scanners and patients with medical implants is constantly growing, radiologists increasingly encounter metallic implant-related artifacts in MRI, resulting in reduced image quality. Therefore, the MRI suitability of implants in terms of artifact volume, as well as the development of pulse sequences to reduce image artifacts, are becoming more and more important. Here, we present a comprehensive protocol which allows for a standardized evaluation of the artifact volume of implants on MRI. Furthermore, this protocol can be used to analyze the vulnerability of different pulse sequences to artifacts. The proposed protocol can be applied to T1- and T2-weighted images with or without fat-suppression and all passive implants. Furthermore, the procedure enables the separate and three-dimensional identification of signal loss and pile-up artifacts. As previous investigations differed greatly in evaluation methods, the comparability of their results was limited. Thus, standardized measurements of MRI artifact volumes are necessary to provide better comparability. This may improve the development of the MRI suitability of implants and better pulse sequences to finally improve patient care.

As the number of magnetic resonance imaging (MRI) scanners and patients with medical implants is constantly growing, radiologists increasingly encounter metallic implant-related artifacts in MRI, resulting in reduced image quality. Therefore, the MRI suitability of implants in terms of artifact volume, as well as the development of pulse sequences to reduce image artifacts, are becoming more and more important. Here, we present a comprehensive protocol which allows for a standardized evaluation of the artifact volume of implants on MRI. Furthermore, this protocol can be used to analyze the vulnerability of different pulse sequences to artifacts. The proposed protocol can be applied to T1- and T2-weighted images with or without fat-suppression and all passive implants. Furthermore, the procedure enables the separate and three-dimensional identification of signal loss and pile-up artifacts. As previous investigations differed greatly in evaluation methods, the comparability of their results was limited. Thus, standardized measurements of MRI artifact volumes are necessary to provide better comparability. This may improve the development of the MRI suitability of implants and better pulse sequences to finally improve patient care.

Verfahren

As the number of magnetic resonance imaging (MRI) scanners and patients with medical implants is constantly growing, radiologists increasingly encounter metallic implant-related artifacts in MRI, resulting in reduced image quality. Therefore, the MRI suitability of implants in terms of artifact volume, as well as the development of pulse sequences to reduce image artifacts, are becoming more and more important. Here, we present a comprehensive protocol which allows for a standardized evaluation of the artifact volume of implants on MRI. Furthermore, this protocol can be used to analyze the vulnerability of different pulse sequences to artifacts. The proposed protocol can be applied to T1- and T2-weighted images with or without fat-suppression and all passive implants. Furthermore, the procedure enables the separate and three-dimensional identification of signal loss and pile-up artifacts. As previous investigations differed greatly in evaluation methods, the comparability of their results was limited. Thus, standardized measurements of MRI artifact volumes are necessary to provide better comparability. This may improve the development of the MRI suitability of implants and better pulse sequences to finally improve patient care.

Tags