Science Education
>

Methods for Comparing Nutrients in Beebread Made by Africanized and European Honey Bees and the Effects on Hemolymph Protein Titers

LEHRERVORBEREITUNG
KONZEPTE
SCHÜLERPROTOKOLL
JoVE Journal
Biologie
This content is Free Access.
JoVE Journal Biologie
Methods for Comparing Nutrients in Beebread Made by Africanized and European Honey Bees and the Effects on Hemolymph Protein Titers

1. Obtaining Beebread from AHB and EHB Colonies

  1. Place pollen traps on honey bee colonies and collect pollen. Grind the pollen into a fine powder (similar to pollen shed from anthers) using a coffee grinder.
  2. Establish 5 colonies each of AHB and EHB in an enclosed flight area (EFA) so that bees forage only on the pollen provided. To prevent workers from drifting between EHB and AHB colonies, divide the EFA into separate sections so that bees cannot cross between them. Place individual EHB or AHB colonies with 3,500-4,000 worker bees, wax comb with nectar, honey, immature brood and empty comb in each section of the EFA.
    NOTE: The colonies do not have stored pollen when established. The rate that pollen is stored can be increased by not including a laying queen in the colonies.
  3. Feed ground pollen to colonies by placing a tray with the pollen in each section of the EFA. Spreading about 60 g of pollen on each tray so that foraging bees can collect it as corbicular loads and store the pollen in their colonies as beebread. Continue providing fresh pollen on each tray daily for 3 weeks.
  4. Refer to beebread from the European colonies as European beebread (EBB), and from Africanized colonies as Africanized beebread (ABB).

2. Feeding Bees in Cages

  1. Place frames of sealed worker brood from AHB and EHB colonies in separate emergence cages in an environmental room set at 32-34 °C and 40% relative humidity..
  2. When the workers emerge and are about 24 hr old, establish 12 Plexiglas bioassay cages (dimensions = 11.5 x 7.5 x 16.5 cm3) and add either 100 newly emerged EHB or 100 newly emerged AHB worker bees to each cage. Place a section of comb with a known number of either EBB or ABB cells (24-30 cells per cage) in each cage to generate the following treatment combinations: AHB fed ABB, EHB fed ABB, AHB fed EBB and EHB fed EBB. (4 treatments; 6 cages per treatment; 24 cages in total).
  3. Add vials of water and a 50% honey and water solution formulated by volume to each cage. Refill the honey and water vials daily for the 11 day study period.

3. Sampling Worker Bees and Beebread and Estimating Consumption

  1. Sample 10 newly emerged EHB and AHB workers prior to placing them in the cages. Refer to these as Day 0 bees and have them serve as a baseline for hemolymph protein concentrations.
  2. Remove 10 bees from each cage after they fed on EBB or ABB for 4, 7, and 11 days.
  3. Place the live bees in individual microcentrifuge tubes and set on ice packs. Select a subsample of four bees for analysis of hemolymph protein concentration.
  4. After sampling bees on Day-11, count the number of comb cells that still contain beebread. This is a relative measure of beebread consumption.
  5. Remove the remaining beebread from the cells in each cage and store in separate microcentrifuge tubes according to cage. Keep the beebread samples at -80 °C until analyzed for pH, soluble protein concentration, and amino acid content.

4. Estimating pH of Pollen and Beebread

  1. Take six random 0.3 g samples of the pollen fed to bees in the EFA and dissolve it in 300 µl of distilled water. Measure the pH using a waterproof double junction pH spear with an accuracy of +0.01.
  2. Take 0.3 g sample of beebread that remained after the 11-day feeding period in each cage. Dissolve the beebread in 300 µl of distilled water and measure pH as described for pollen (4.1).

5. Protein Analysis

  1. Take six samples of the pollen and a sample of EBB and ABB from each cage. Store samples at -20 °C until analyzed for soluble protein concentration.
  2. Mix 20 mg of either pollen or beebread with 1,000 µl of 0.1 M phosphate buffer solution (PBS).
  3. Vortex the mixture for 10 sec and centrifuge at 571.2 x g for 1 min.
  4. Remove a 10 µl sample of the supernatant and place in wells of a 96 well flat bottom EIA/RIA polystyrene plate. Replicate each sample in three wells.
  5. Draw hemolymph from bees collected from each cage by inserting a 20 μl capillary tube (that had been heated and pulled to a needle-sharp point) into the right lateral portion of the thorax near the point of attachment of the wings. Collect additional hemolymph, if needed, by inserting the same tube into the membrane between the abdominal tergites.
  6. Add 1 μl of hemolymph to 9 μl of 0.1 M PBS. Store the hemolymph solution at -20 °C until analysis for soluble protein.
  7. Determine total soluble protein concentrations in pollen, beebread, and hemolymph samples using a commercial Bradford protein assay kit. Follow the manufacturer’s instructions.
  8. Establish a standard curve to estimate soluble protein concentration in the samples by measuring protein absorbance with known protein concentrations in bovine serum albumin (BSA). Measure protein absorbance at 595 nm using a spectrophotometer.

6. Amino Acid Analysis

  1. Pool individual samples from comb cells of each colony to create a representative sample of EBB and ABB for analysis.
  2. Take a 50 mg pollen or beebread sample weighed into autosampler vials, and add 1 ml of distilled water to the vial, along with 100 µl of a 50 ng/μl internal standard solution consisting of d4-alanine, d23-lauric acid, 13C6-glucose and d39-arachidiac acid.
  3. Cap the sample and sonicate for 5 min.
  4. Condition an HLB cartridge by adding 1 ml of methanol, equilibrated by adding 1 ml of distilled water followed by the addition of 1 ml of the beebread or pollen sample. Wash the cartridge with 1 ml of 5.0% MeOH/H2O and elute with 1 ml of 80% MeOH/H2O.
  5. Evaporate the sample to dryness under a stream of nitrogen. Reconstitute the sample with 50 µl of Pyridine and 100 µl of N,O-Bis (trimethylsilyl)trifluoroacetamide + Trimethylchlorosilane (BSTFA + TMCS).
  6. Cap and incubate the sample at 70 °C for 30 min.
  7. Allow the sample to cool and transfer it to a clean autosampler vial.
  8. Cap and place the sample into a Mass Selective Detector interfaced to a gas chromatograph to analyze the samples both for volatile compounds and organic acids. Separate the sugar and organic acids following TMS derivatization with BSTFA + TMCS using a column (30 m x 0.25 mm i.d.) with a 1.0 µm film thickness.
  9. Set the column oven at 50 C for 2 min, then increase the temperature linearly to 290 °C at 5 C/min. and hold for 7 min. Set the GC injector and GC/MS interface to 250 °C and 290 °C, respectively.
    1. Use Helium as a carrier at a flow rate of 1.0 ml/min. Set the MS source temperature to 230 °C.
  10. Tune and calibrate the mass spectrometer daily with Perfluorotributylamine (PFTBA). Use a 1 µl injection of PFTBA in the full scan (35-700 amu) positive ion mode to obtain data on the presence and concentrations of amino acids.

Methods for Comparing Nutrients in Beebread Made by Africanized and European Honey Bees and the Effects on Hemolymph Protein Titers

Learning Objectives

Beebread was stored in -80 °C for less than a month before being analyzed for pH and protein concentration, and for about 4 months before amino acid analysis. Beebread differed from the pollen in pH and protein concentration (Figure 1). The pH of beebread was lower than the pollen as was the protein concentration. Both EHB and AHB consumed more ABB than EBB (Figure 2).

Levels of soluble protein in the hemolymph of AHB were significantly higher than EHB regardless of the type of beebread they consumed (Figure 3). These differences in hemolymph protein levels occurred even though EHB and AHB consumed similar amounts of each type of beebread. The age of the bees at the time of sampling significantly affected soluble protein concentrations in the hemolymph. Protein concentrations were significantly lower in day-4 bees compared with day-7 or 11 which did not differ.

Of the 10 amino acids that are essential for honey bees, all but histidine were detected in the pollen. In most cases, amino acid concentrations measured in beebread were higher than in the pollen (Figure 4). For example, concentrations of leucine and threonine were about 60% higher in beebread compared with pollen, and valine concentrations were about 25% higher. Alanine, aspartic acid, glutamine, and methionine levels also were higher in beebread than in pollen. Amino acids concentrations did not differ greatly between ABB and EBB with the exception of phenylalanine and cysteine. Phenylalanine levels were about twice as high in ABB compared with either EBB or pollen. Cysteine concentrations were lower in EBB compared with ABB or pollen. Tryptophan was the only amino acid present in higher concentrations in pollen than in EBB or ABB. Concentrations of proline in pollen and ABB were higher than in EBB.

Figure 1
Figure 1: Comparisons of pH (A) and soluble protein concentrations (B) in pollen and the beebread made by European (EHB) or Africanized (AHB) honey bees. The pH of pollen was significantly higher than the beebread as determined by analysis of variance (F2,12 = 3725, p <0.0001) followed by a Tukeys W- multiple comparison test. The protein concentration in pollen was significantly higher than in beebread made by EHB (EBB) or AHB (ABB) (F2,27 = 16.49; p <0.0001). Means followed by the same letter are not significantly different at the 0.05 level.

Figure 2
Figure 2: The average percentage of cells containing beebread that were completely consumed over an 11 day interval by caged bees. The beebread was made by either European (EHB) or Africanized (AHB) bees using the same pollen source. Means were estimated from five cages of each treatment; those with the same letter are not significantly different at the 0.05 level as determined by a one way analysis of variance (F3,16 = 7.3, p = 0.003) and Tukey’s W test. This Figure has been modified from 25.

Figure 3
Figure 3: The average concentration of protein in hemolymph from European (EHB) or Africanized (AHB) honey bees fed beebread made by European (EBB) or Africanized (ABB) bees for 4, 7, and 11 days. A repeated measures analysis of variance indicated significant differences among the 4 treatment groups (F3,20 = 19.7, p <0.001). Levels of soluble protein in AHB fed ABB were significantly higher than EHB fed ABB (p = 0.008) or EBB (p = 0.018). The age of the bees at the time of sampling significantly affected soluble protein concentrations in the hemolymph. Levels were significantly lower in day-4 bees compared with day-7 (p <0.0001) or 11 (p = 0.001). Day 7 and day11 bees did not differ (p = 0.149). This figure has been modified from25 .

Figure 4
Figure 4: Concentrations of amino acids (µg per gram of pollen or beebread) in pollen or the beebread made from it. EBB is beebread made by European bees and ABB was made by Africanized bees. Tryptophan, cysteine, phenylalanine and proline were plotted separately for purposes of clarity in presenting their amounts. This figure has been modified from 25.

List of Materials

Name of the Material/Equipment Company Catalog Number Comments/Description
waterproof double junction pH spear  Thermo Fisher
Scientific
Coffee Grinder Mr. Coffee  model 1DS77
Dulbecco's phosphate buffer solution Emd-millipore BSS-1005-B
EIA/RIA polystyrene plate Sigma-Aldrich-Corning CLS3590-100EA
microcapillary pipets Kimble Glass Inc.
Quick Start Bradford Protein Assay Kit 2  Bio-Rad #500-0202
Laboratories
Spectrophotometer Biotek Synergy HT 
Mass Selective Detector  Agilent 5973N
HLB cartridge
gas chromatograph  Agilent 6930
 gas chromatography column  A J&W Scientific  DB-1701
d4-alanine  Sigma-Aldrich 488917
d23-lauric acid Sigma-Aldrich 451401
13C6-glucose Sigma-Aldrich 389374
Pyridine  Sigma-Aldrich 270970
N,O-Bis (trimethylsilyl)trifluoroacetamide +  
Trimethylchlorosilane (BSTFA + TMCS) Sigma-Aldrich 33148
Perfluorotributylamine (PFTBA) Sigma-Aldrich 442747-U
d39-arachidiac acid Cambridge Isotope 
Laboratories

Lab Prep

Honey bees obtain nutrients from pollen they collect and store in the hive as beebread. We developed methods to control the pollen source that bees collect and convert to beebread by placing colonies in a specially constructed enclosed flight area. Methods were developed to analyze the protein and amino acid composition of the pollen and beebread. We also describe how consumption of the beebread was measured and methods used to determine adult worker bee hemolymph protein titers after feeding on beebread for 4, 7 and 11 days after emergence. Methods were applied to determine if genotype affects the conversion of pollen to beebread and the rate that bees consume and acquire protein from it. Two subspecies (European and Africanized honey bees; EHB and AHB respectively) were provided with the same pollen source. Based on the developed methods, beebread made by both subspecies had lower protein concentrations and pH values than the pollen. In general, amino acid concentrations in beebread made by either EHB or AHB were similar and occurred at higher levels in beebread than in pollen. Both AHB and EHB consumed significantly more of the beebread made by AHB than by EHB. Though EHB and AHB consumed similar amounts of each type of beebread, hemolymph protein concentrations in AHB were higher than in EHB. Differences in protein acquisition between AHB and EHB might reflect environmental adaptations related to the geographic region where each subspecies evolved. These differences could contribute to the successful establishment of AHB populations in the New World because of the effects on brood rearing and colony growth.

Honey bees obtain nutrients from pollen they collect and store in the hive as beebread. We developed methods to control the pollen source that bees collect and convert to beebread by placing colonies in a specially constructed enclosed flight area. Methods were developed to analyze the protein and amino acid composition of the pollen and beebread. We also describe how consumption of the beebread was measured and methods used to determine adult worker bee hemolymph protein titers after feeding on beebread for 4, 7 and 11 days after emergence. Methods were applied to determine if genotype affects the conversion of pollen to beebread and the rate that bees consume and acquire protein from it. Two subspecies (European and Africanized honey bees; EHB and AHB respectively) were provided with the same pollen source. Based on the developed methods, beebread made by both subspecies had lower protein concentrations and pH values than the pollen. In general, amino acid concentrations in beebread made by either EHB or AHB were similar and occurred at higher levels in beebread than in pollen. Both AHB and EHB consumed significantly more of the beebread made by AHB than by EHB. Though EHB and AHB consumed similar amounts of each type of beebread, hemolymph protein concentrations in AHB were higher than in EHB. Differences in protein acquisition between AHB and EHB might reflect environmental adaptations related to the geographic region where each subspecies evolved. These differences could contribute to the successful establishment of AHB populations in the New World because of the effects on brood rearing and colony growth.

Verfahren

Honey bees obtain nutrients from pollen they collect and store in the hive as beebread. We developed methods to control the pollen source that bees collect and convert to beebread by placing colonies in a specially constructed enclosed flight area. Methods were developed to analyze the protein and amino acid composition of the pollen and beebread. We also describe how consumption of the beebread was measured and methods used to determine adult worker bee hemolymph protein titers after feeding on beebread for 4, 7 and 11 days after emergence. Methods were applied to determine if genotype affects the conversion of pollen to beebread and the rate that bees consume and acquire protein from it. Two subspecies (European and Africanized honey bees; EHB and AHB respectively) were provided with the same pollen source. Based on the developed methods, beebread made by both subspecies had lower protein concentrations and pH values than the pollen. In general, amino acid concentrations in beebread made by either EHB or AHB were similar and occurred at higher levels in beebread than in pollen. Both AHB and EHB consumed significantly more of the beebread made by AHB than by EHB. Though EHB and AHB consumed similar amounts of each type of beebread, hemolymph protein concentrations in AHB were higher than in EHB. Differences in protein acquisition between AHB and EHB might reflect environmental adaptations related to the geographic region where each subspecies evolved. These differences could contribute to the successful establishment of AHB populations in the New World because of the effects on brood rearing and colony growth.

Tags