Este protocolo proporciona un método de aislamiento primario de células T murinas y microscopía de lapso de tiempo de la migración de células T en condiciones ambientales específicas con análisis cuantitativo.
La respuesta inmunitaria adaptativa depende de la capacidad de una célula T para migrar a través de la sangre, la linfa y los tejidos en respuesta a patógenos y cuerpos extraños. La migración de células T es un proceso complejo que requiere la coordinación de muchas entradas de señales del medio ambiente y de las células inmunitarias locales, incluidas las quimiocinas, los receptores de quimiocinas y las moléculas de adhesión. Además, la motilidad de las células T está influenciada por las señales ambientales dinámicas circundantes, que pueden alterar el estado de activación, el paisaje transcripcional, la expresión de la molécula de adhesión y más. In vivo, la complejidad de estos factores aparentemente entrelazados hace que sea difícil distinguir las señales individuales que contribuyen a la migración de las células T. Este protocolo proporciona una serie de métodos, desde el aislamiento de células T hasta el análisis asistido por computadora, para evaluar la migración de células T en tiempo real en condiciones ambientales altamente específicas. Estas condiciones pueden ayudar a dilucidar los mecanismos que regulan la migración, mejorando nuestra comprensión de la cinética de las células T y proporcionando una fuerte evidencia mecanicista que es difícil de lograr a través de experimentos con animales. Una comprensión más profunda de las interacciones moleculares que afectan la migración celular es importante para desarrollar terapias mejoradas.
Las células T son los principales efectores de la respuesta inmunitaria adaptativa específica de antígeno. A nivel poblacional, las células T son heterogéneas, compuestas por subconjuntos celulares con distintas funciones especializadas. Es importante destacar que los linfocitos T CD8+ son los principales efectores citolíticos del sistema inmunitario, que eliminan directamentelas células infectadas o disfuncionales.
Las células T CD8+ maduras residen en el tejido y circulan a través de la sangre y los vasos linfáticos en busca de antígenos. Durante la infección, las células T se presentan con antígenos en la sangre o el tejido y drenan rápidamente al bazo o al ganglio linfático de drenaje más cercano para comenzar una respuesta inmunitaria productiva. En cualquier caso, las células T se activan, experimentan una expansión clonal y abandonan el sistema linfático para ingresar a la sangre, si aún no están allí. Durante este proceso, la señalización intracelular confiere la regulación a la baja de los receptores linfáticos y la regulación al alza de numerosos receptores de integrinas y quimiocinas esenciales para la migración específica del tejido2. En última instancia, la migración dirigida de las células T a los sitios de infección está impulsada por señales ambientales convergentes que incluyen la señalización de integrinas y quimiocinas.
Las quimiocinas se pueden clasificar en dos clases principales: (1) señales homeostáticas, que son esenciales para la diferenciación, la supervivencia y la función basal, y (2) señales inflamatorias, como CXCL9, CXCL10 y CCL3, que son necesarias para la quimiotaxis. Generalmente, las quimiocinas crean un gradiente de señal que impulsa la migración direccional, conocida como quimiotaxis, además de activar la expresión de integrinas1. La quimiotaxis está finamente regulada y es altamente sensible, con células T capaces de responder a pequeños cambios en el gradiente que pueden llevarlas hacia una dirección o ubicación específica.
Además de estos factores relacionados con las células T, la migración también se ve afectada por la composición y la densidad de la matriz extracelular (MEC). La MEC está formada por una densa red de proteínas, entre las que se incluyen el colágeno y los proteoglicanos, que proporcionan el andamiaje para los receptores de integrinas adhesivas en las células T. Las integrinas son una familia diversa de proteínas transmembrana, cada una con dominios de unión altamente especializados y efectos de señalización posteriores. La expresión dinámica de los receptores de integrinas en la superficie de una célula T permite una rápida adaptación a sus entornos cambiantes3. Es importante destacar que las integrinas conectan la MEC y las redes de actina del citoesqueleto intracelular que trabajan juntas para generar la fuerza propulsora necesaria para el movimiento de las células T.
En resumen, los patrones de migración varían en función del fenotipo de las células inmunitarias o de las señales ambientales. Estos complejos procesos biológicos están estrechamente regulados por la expresión de citocinas, quimiocinas e integrinas en la superficie de la célula T, las células circundantes y el tejido local infectado. In vivo, estos mecanismos migratorios pueden ser complejos y pueden ser el resultado de varias señales aditivas4. Debido a esta complejidad, puede ser imposible establecer una relación causal entre variables aparentemente entrelazadas. Para superar esto, existen varios enfoques in vitro para estudiar aspectos específicos de la migración de células T, como la respuesta a señales específicas de quimiocinas y la interacción entre las integrinas de células T y las proteínas de unión a la MEC. Este protocolo aborda métodos para aislar y activar células T CD8+ murinas, con ensayos de migración in vitro en espacio bidimensional y herramientas de análisis computacional para analizar la migración de células T especificadas. Estos métodos son ventajosos para el usuario porque no requieren materiales o dispositivos sofisticados, como ocurre con algunos otros ensayos de migración celular descritos en la literatura. Los datos de migración celular generados con estos métodos pueden proporcionar evidencia de respuestas inmunitarias de una manera simplista que permite una investigación más profunda e informada in vivo.
Comprender el impacto biológico de las señales convergentes in vivo es un desafío y no es fácil de interpretar. Los protocolos presentados en este documento proporcionan un método razonable para comprender la migración de células T en condiciones altamente definidas y biológicamente relevantes. Estas condiciones se pueden especificar según la discreción del investigador, y los protocolos se pueden modificar para adaptarse a las necesidades de varias poblaciones de células T, el estado de activación y…
The authors have nothing to disclose.
Agradecemos a los miembros anteriores y actuales del Kim Lab que han contribuido al desarrollo de estos protocolos a lo largo del tiempo. Los datos representativos fueron posibles gracias a P01 AI102851/AI/NIAID, NIH HHS/Estados Unidos y P01 HL018208/HL/NHLBI, NIH HHS/Estados Unidos. Esta publicación fue posible en parte gracias a la subvención número T32 GM135134 del Premio Institucional Ruth L. Kirschstein del Servicio Nacional de Investigación.
10 cm dish | Corning | 353003 | or equivalent |
15 mL conical tube | ThermoFisher | 339650 | or equivalent |
1x DPBS | Gibco | 14190144 | without calcium and without magnesium |
6 well plate non-TC treated | Corning | 3736 | or equivalent |
70 µm cell strainer | FisherScientific | 352350 | or equivalent |
ACK lysing buffer | ThermoFisher | A1049201 | or equivalent |
Allegra 6KR centrifuge | ThermoScientific | sorvall 16R with tx400 3655 rotor and bucket | or equivalent |
Beta mercaptoethanol | Sigma | M3148 | or equivalent |
CellTrace Violet | ThermoFisher | C34571 | Or equivalent |
Centrifuge | ThermoScientific | Sorvall ST 16R | or equivalent |
Collagen (IV) | Corning | 354233 | or equivalent |
DeltaT culture dish .17 mm thick glass clear | Bioptechs | 04200417C | |
Dynabeads Sheep anti-Rat IgG | Invitrogen | 11035 | |
DynaMag 15 Magnet | ThermoFisher Scientific | 12301D | or equivalent |
Easy sep mouse T cell isolation kit | Stem Cell | 19851 | |
FBS | SigmaAldrich | F2442-500ML | or equivalent |
Fibronectin | SigmaAldrich | 10838039001 | or equivalent |
Fiji | http://fiji.sc/ | weblink | |
Filter cubes | Nikon or Olympus | ||
GK1.5 | ATCC | TIB-207 | |
HEPES | ThermoFisher | 15630080 | or equivalent |
HQ CCD camera | CoolSNAP | or equivalent | |
ImageJ | http://imagej.nih.gov/ij/h | weblink | |
ImageJ automatic tracking plug in | http://imagej.net/TrackMate | weblink | |
ImageJ manual tracking plug in | https://imagej.nih.gov/ij/plugins/track/track.html | weblink | |
L-15 | Various | See Materials | Medium Recipe: Leibovitz’s L-15 medium without phenol red (Gibco) supplemented with 1-5 g/L glucose |
Liebovitz's L-15 medium, no phenol red | ThermoFisher | 21083027 | |
Luer Lok disposable syringe | Fisher Scientific | 14-955-459 | or equivalent |
Lymphocyte separation medium | Corning | 25-072-CI | or equivalent |
M5/114 | ATCC | TIB-120 | |
MEM Non-Essential Amino Acids | ThermoFisher | 11140050 | or equivalent |
Microscope heating system | Okolab | okolab.com | Custom designs available |
Millicell EZ slide | Millipore | C86024 | |
Mojosort mouse CD8+ Naïve T cell isolation kit | Biolegend | 480043 | |
Mouse E-cadherin | R&D systems | 8875-EC-050 | or equivalent |
Mouse surgical dissection kit | Fisher Scientific | 13-820-096 | or equivalent |
NIS elements | Nikon | Software | |
non-TC 24wp | Corning | 353047 | or equivalent |
Penicillin-streptomycin | ThermoFisher | 15140122 | or equivalent |
Protein A | ThermoFisher Scientific | or equivalent | |
R9 | Various | See Materials | Medium Recipe: RPMI 1640x supplemented with 10 % FBS, 1 % antibiotic-antimycotic (Gibco), 20 mM HEPES buffer (Gibco), 1 % MEM Non-Essential Amino Acids (Gibco), 50 μM β-mercaptoethanol (Sigma-Aldrich) |
Recombinant mouse ICAM-1 Fc chimera | R&D systems | 796-IC-050 | or equivalent |
Recombinant Mouse IL2 | Biolegend | 575410 | or equivalent |
RPMI 1640x | ThermoFisher | 11875093 | or equivalent |
T pins | Fisher Scientific | S99385 | or equivalent |
TE2000-U microscope | Nikon | or equivalent | |
Various recombinant mouse chemokine | R&D systems | or equivalent | |
VCAM-1 Fc chimera | R&D systems | 643-VM-050 | or equivalent |
Volocity | PerkinElmer | Software |