Summary

Immunmagnetische Isolierung von in der Gefäßwand ansässigen CD34+ -Stammzellen aus Mäusen

Published: December 22, 2023
doi:

Summary

Diese Studie hat eine stabile und effiziente Methode zur Isolierung, Kultivierung und funktionellen Bestimmung von in der Gefäßwand ansässigen CD34+ -Stammzellen (CD34+ VW-SCs) etabliert. Diese leicht verständliche und zeitsparende Isolationsmethode kann von anderen Forschern genutzt werden, um die möglichen Mechanismen zu untersuchen, die an Herz-Kreislauf-Erkrankungen beteiligt sind.

Abstract

Residente CD34+ -Stamm- und Vorläuferzellen (VW-SCs) werden zunehmend für ihre entscheidende Rolle bei der Regulierung von Gefäßverletzungen und -reparaturen anerkannt. Die Etablierung einer stabilen und effizienten Methode zur Kultivierung funktioneller muriner CD34+ VW-SCs ist unerlässlich, um die Mechanismen, die an der Proliferation, Migration und Differenzierung dieser Zellen unter verschiedenen physiologischen und pathologischen Bedingungen beteiligt sind, weiter zu untersuchen. Das beschriebene Verfahren kombiniert magnetisches Bead-Screening und Durchflusszytometrie zur Aufreinigung von primär kultivierten residenten CD34+ VW-SCs. Die gereinigten Zellen werden dann durch Immunfluoreszenzfärbung und Ca2+ -Bildgebung funktionell identifiziert. Kurz gesagt, werden Gefäßzellen aus der Adventitia der murinen Aorta und der Mesenterialarterie durch Anheften von Gewebeblöcken gewonnen, gefolgt von einer Subkultivierung bis zum Erreichen einer Zellzahl von mindestens 1 × 107. Anschließend werden CD34+ VW-SCs mittels magnetischer Kügelchensortierung und Durchflusszytometrie aufgereinigt. Die Identifizierung von CD34+ VW-SCs beinhaltet die zelluläre Immunfluoreszenzfärbung, während die funktionelle Multipotenz bestimmt wird, indem die Zellen einem spezifischen Kulturmedium zur orientierten Differenzierung ausgesetzt werden. Darüber hinaus wird die funktionelle interne Ca2+ -Freisetzung und der externe Ca2+ -Eintrag mit einer kommerziell erhältlichen Bildgebungsworkstation in Fura-2/AM-geladenen Zellen bewertet, die ATP, Koffein oder Thapsigargin (TG) ausgesetzt sind. Diese Methode bietet eine stabile und effiziente Technik zur Isolierung, Kultivierung und Identifizierung von in der Gefäßwand ansässigen CD34+ -Stammzellen und bietet die Möglichkeit für In-vitro-Studien zu den Regulationsmechanismen von VW-SCs und das Screening von zielgerichteten Medikamenten.

Introduction

Die Gefäßwand spielt eine zentrale Rolle bei der Gefäßentwicklung, der homöostatischen Regulation und dem Fortschreiten von Gefäßerkrankungen. In den letzten Jahren haben zahlreiche Studien das Vorhandensein verschiedener Stammzelllinien in den Arterien aufgedeckt. Im Jahr 2004 berichtete die Gruppe von Professor Qingbo Xu erstmals über die Existenz von vaskulären Stamm-/Vorläuferzellen in der Peripherie der adulten Gefäßwand, die CD34, Sca-1, c-kit und Flk-11 exprimieren. Diese vaskulären Stammzellen weisen ein multidirektionales Differenzierungs- und Proliferationspotenzial auf. Unter normalen Bedingungen bleiben sie relativ ruhig; Wenn sie jedoch durch bestimmte Faktoren aktiviert werden, können sie sich in glatte Muskelzellen, Endothelzellen und Fibroblasten differenzieren. Alternativ können sie die perivaskuläre Matrix und die Bildung von Mikrogefäßen durch parakrine Effekte regulieren, um die Reparatur oder den Umbau verletzter Gefäße zu fördern 2,3,4,5,6. Kürzlich wurde festgestellt, dass residente CD34+-Stammzellen in der Gefäßwand eine Rolle bei der Regeneration von Endothelzellen nach einer Verletzung des Führungsdrahts der Oberschenkelarterie spielen2. Folglich sind die Isolierung und Quantifizierung von CD34+ VW-SCs und die Untersuchung der grundlegenden biologischen Eigenschaften von CD34+ Stammzellen von entscheidender Bedeutung für die weitere Untersuchung der Signalwege, die an der Regulation von CD34+ VW-SCs beteiligt sind.

Derzeit stehen verschiedene Methoden zur Zelltrennung zur Verfügung, darunter Techniken, die auf Zellkultureigenschaften oder physikalischen Eigenschaften von Zellen basieren, wie z. B. die Dichtegradientenzentrifugation, die zu sortierten Zellen führt, die viele Nichtzielzellen und eine relativ geringe Reinheit enthalten 7,8,9,10,11,12 . Eine weitere häufig verwendete Technik ist die Fluoreszenz-/magnetisch unterstützte Zellsortierung. Die fluoreszenzaktivierte Zellsortierung (FACS) ist ein komplexes System mit hohen technischen Anforderungen, das relativ teuer und zeitaufwändig ist und möglicherweise die Aktivität der sortierten Zellen beeinträchtigt13,14. Die magnetisch aktivierte Zellsortierung (MACS) ist jedoch effizienter und bequemer, mit einer hohen Rückgewinnungsrate und Zellaktivität und geringeren Auswirkungen auf nachgelagerte Anwendungen8. Daher haben wir in diesem Protokoll MACS zur Aufreinigung von CD34+ VW-SCs angewendet und die Zellen durch Durchflusszytometrie weiter identifiziert. Die Etablierung von MACS-basierten Isolationsmethoden zur Untersuchung von Gefäßwandstammzellen wäre von unschätzbarem Wert. Zum einen ermöglicht sie experimentelle genetische und zellbiologische Studien. Zweitens ermöglicht die effiziente Isolierung und Kultivierung von Stammzellen aus der Gefäßwand eine systematische Bewertung und ein Screening von Signalfaktoren, die die Stammzellfunktionen regulieren. Drittens stellt die Identifizierung kritischer Phänotypen in Stammzellen eine wichtige “Qualitätskontrolle” bei der Beurteilung des Zellstatus dar. Daher könnte die Identifizierung von Methoden zur Reinigung für ähnliche Anwendungen bei analogen Stammzellen, die aus Gefäßen gewonnen werden, nützlich sein.

Dieser Bericht bietet eine detaillierte Demonstration einer stabilen und zuverlässigen Methode für die Kultivierung von CD34+ VW-SCs, einschließlich Zellidentifizierung und funktioneller Bewertung, die durch Durchflusszytometrie, Immunfluoreszenzfärbung und Ca2+ -Signalmessung durchgeführt wird. Diese Studie bildet die Grundlage für weitere vertiefte Forschungen zur Funktion von CD34+ VW-SCs und ihren Regulationsmechanismen unter physiologischen und pathologischen Bedingungen.

Protocol

Diese Studie wurde genehmigt und die Tiere wurden in Übereinstimmung mit den Richtlinien für das Management und die Verwendung von Labortieren in China behandelt. Die Forschung hielt sich strikt an die ethischen Anforderungen von Tierversuchen, mit Genehmigung der Tierethikkommission (Zulassungsnummer: SWMU2020664). Für die vorliegende Studie wurden acht Wochen alte gesunde C57BL/6-Mäuse beiderlei Geschlechts mit einem Gewicht zwischen 18 und 20 g verwendet. Die Tiere wurden im Laboratory Animal Center der Southwest …

Representative Results

Isolierung und Reinigung von CD34+ VW-SCsDie hohe Reinheit von CD34+ VW-SCs wird aus der Adventitia der Aorta und der Mesenterialarterie der Maus durch Gewebeattachment und magnetische Mikrokügelchensortierung gewonnen. Der Anteil der CD34+ -Zellen in der Gefäßwand liegt im Allgemeinen bei 10%-30%. Die Durchflusszytometrie bestätigt, dass die Reinheit von CD34+ -Zellen, die durch magnetische Bead-Sortierung erhalten werden, mehr als 90 % beträgt (<stro…

Discussion

Diese Studie bietet eine schnelle und bequeme Methode zur Gewinnung von funktionellen CD34+ VW-SCs aus der Aorta und den Mesenterialarterien von Mäusen. CD34+ VW-SCs, die mit dieser Methode erhalten werden, haben proliferative Aktivität und multidirektionale Differenzierungseigenschaften. Triphosphat-Inositol-1,4,5-Trisphosphat-Rezeptoren (IP3Rs), Ryanodin-Rezeptoren (RyRs) und speicherbetriebene Calciumkanäle vermitteln die Freisetzung und den Eintritt von Ca2+ in CD34

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Diese Arbeit wurde durch Zuschüsse der National Natural Science Foundation of China (Nr. 82070502, 31972909, 32171099) und des Sichuan Science and Technology Program der Provinz Sichuan (23NSFSC0576, 2022YFS0607) finanziert. Die Autoren danken Qingbo Xu von der Zhejiang University für die Hilfe bei der Zellkultur, und die Autoren danken der Durchflusszytometrie-Plattform an der Southwest Medical University für die wissenschaftliche und technische Unterstützung.

Materials

2% gelatin solution Sigma G1393
Anti-CD31 antibody R&D AF3628
Anti-CD34 antibody Abcam ab81289
Anti-c-kit antibody CST 77522
Anti-FITC MicroBeads Miltenyi Biotec 130-048-701 
Anti-FITC MicroBeads MACS Miltenyi Biotec 130-048-701
Anti-Flk- 1 antibody Abcam ab24313
Anti-Ki67 antibody CST 34330
Anti-PDGFRα antibody Abcam ab131591
Anti-Sca- 1 antibody Invitrogen 710952
CD140a (PDGFRA) Monoclonal Antibody (APA5), FITC eBioscience  Invitrogen 11-1401-82
CD31 (PECAM-1) Monoclonal Antibody (390), APC eBioscience  Invitrogen 17-0311-82
CD34 Antibody, anti-mouse, FITC, REAfinity Clone REA383 Miltenyi Biotec 130-117-775
cell culture hood JIANGSU SUJING GROUP CO.,LTD  SW-CJ-2FD
Centrifuge   CENCE   L530
CO2 incubators             Thermofisher Scientific 4111
Confocal laser scanning microscope  Zeiss  zeiss 980  
DMEM High Glucose Medium ATCC 30-2002
EBM-2 culture medium Lonza CC-3162
FACSMelody   BD Biosciences
FACSMelody™ System  BD
Fetal bovine serum Millipore ES-009-C
FM-2 culture medium ScienCell 2331
Fura-2/AM  Invitrogen M1292
Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 488  Thermofisher Scientific    A32731
Leukemia inhibitory factor Millipore LIF2010
Microscope  Olympus IX71
MiniMACS   Starting Kit Miltenyi Biotec 130-090-312
Penicillin-Streptomycin-Amphotericin B Solution Beyotime C0224
Purified Rat Anti-Mouse CD16/CD32 (Mouse BD Fc Block) BD Pharmingen 553141
Stereo Microscope  Olympus SZX10 
TILLvisION 4.0 program   T.I.L.L.Photonics GmbH polychrome V 
VWF Monoclonal Antibody (F8/86) Thermofisher Scientific  MA5-14029
β-Mercaptoethanol Thermofisher Scientific 21985023

Referenzen

  1. Hu, Y., et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest. 113 (9), 1258-1265 (2004).
  2. Jiang, L., et al. Nonbone marrow CD34+ cells are crucial for endothelial repair of the injured artery. Circ Res. 129 (8), e146-e165 (2021).
  3. Tamma, R., Ruggieri, S., Annese, T., Ribatti, D. Vascular wall as a source of stem cells able to differentiate into endothelial cells. Adv Exp Med Biol. 1237, 29-36 (2020).
  4. Patel, J., et al. Functional definition of progenitors versus mature endothelial cells reveals key soxF-dependent differentiation process. Circulation. 135 (8), 786-805 (2017).
  5. Zhang, L., Issa Bhaloo, S., Chen, T., Zhou, B., Xu, Q. Roles of stem cells in vascular remodeling. Chin J Cell Biol. 43 (7), 1352-1361 (2021).
  6. Zhang, L., et al. Role of resident stem cells in vessel formation and arteriosclerosis. Circ Res. 122 (11), 1608-1624 (2018).
  7. Wu, Y., et al. Effects of estrogen on growth and smooth muscle differentiation of vascular wall-resident CD34+ stem/progenitor cells. Atherosclerosis. 240 (2), 453-461 (2015).
  8. Tang, J. M., et al. Isolation and culture of vascular wall-resident CD34+ stem/progenitor cells. Cardiol Plus. 4 (4), 116-120 (2019).
  9. Sukumaran, P., et al. Calcium signaling regulates autophagy and apoptosis. Cells. 10 (8), 2125 (2021).
  10. van der Sanden, B., Dhobb, M., Berger, F., Wion, D. Optimizing stem cell culture. J Cell Biochem. 111 (4), 801-807 (2010).
  11. Rotmans, J. I., et al. In vivo, cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation. 112 (1), 12-18 (2005).
  12. Qu, R., et al. The role of serum amyloid A1 in the adipogenic differentiation of human adipose-derived stem cells basing on single-cell RNA sequencing analysis. Stem Cell Res Ther. 13 (1), 187 (2022).
  13. Flynn, J., Gorry, P. Flow Cytometry Analysis to Identify Human CD8+ T Cells. Methods Mol Biol. 2048, 1-13 (2019).
  14. Bacon, K., Lavoie, A., Rao, B. M., Daniele, M., Menegatti, S. Past, present, and future of affinity-based cell separation technologies. Acta Biomater. 112, 29-51 (2020).
  15. Ma, H. G., Liu, H. Q., Liu, S. D., Tang, Y. Y. Primary culture and identification of rat glomerular microvascular endothelial cells. Acta Physiol Sin. 73 (6), 926-930 (2021).
  16. Liu, W. H., Wang, P., Yang, J. Isolation, culture and identification of rats hair follicle neural crest stem cells. Chin J Neuroanat. 35 (2), 207-211 (2019).
  17. Kumar, P., Garg, N. Flow cytometry approaches to obtain medulloblastoma stem cells from bulk cultures. Methods Mol Biol. 2423, 87-94 (2022).
  18. Haroon, M. M., Vemula, P. K., Palakodeti, D. Flow cytometry analysis of planarian stem cells using DNA and mitochondrial dyes. Bio Protoc. 12 (2), e4299 (2022).
  19. Catchpole, T., Nguyen, T. D., Gilfoyle, A., Csaky, K. G. A profile of circulating vascular progenitor cells in human neovascular age-related macular degeneration. PLOS One. 15 (2), e0229504 (2020).
  20. Wang, G., Yu, G., Wang, D., Guo, S., Shan, F. Comparison of the purity and vitality of natural killer cells with different isolation kits. Exp Ther Med. 13 (5), 1875-1883 (2017).
  21. Moore, D. K., Motaung, B., du Plessis, N., Shabangu, A. N., Loxton, A. G. Consortium SI. Isolation of B-cells using Miltenyi MACS bead isolation kits. PLOS One. 14 (3), e0213832 (2019).
  22. Jiang, L. H., Mousawi, F., Yang, X., Roger, S. ATP-induced Ca2+-signalling mechanisms in the regulation of mesenchymal stem cell migration. Cell Mol Life Sci. 74 (20), 3697-3710 (2017).
  23. Ong, H. L., Subedi, K. P., Son, G. Y., Liu, X., Ambudkar, I. S. Tuning store-operated calcium entry to modulate Ca2+-dependent physiological processes. Biochim Biophys Acta Mol Cell Res. 1866 (7), 1037-1045 (2019).
  24. Garcia-Carlos, C. A., et al. Angiotensin II, ATP and high extracellular potassium induced intracellular calcium responses in primary rat brain endothelial cell cultures. Cell Biochem Funct. 39 (5), 688-698 (2021).
  25. Reggiani, C. Caffeine as a tool to investigate sarcoplasmic reticulum and intracellular calcium dynamics in human skeletal muscles. J Muscle Res Cell Motil. 42 (2), 281-289 (2021).

Play Video

Diesen Artikel zitieren
Han, C., Xie, C., Dang, Q., Zhang, X., Li, C., Yang, Y., Cheng, J., Li, P. Immunomagnetic Isolation of the Vascular Wall-Resident CD34+ Stem Cells from Mice. J. Vis. Exp. (202), e66193, doi:10.3791/66193 (2023).

View Video