Summary

Multiplex-Lebendzell-Bildgebung für das Ansprechen auf Medikamente in patientenabgeleiteten Organoidmodellen von Krebs

Published: January 05, 2024
doi:

Summary

Patient-Derived Tumor Organoids sind ein ausgeklügeltes Modellsystem für die Grundlagen- und translationale Forschung. Dieser Methodenartikel beschreibt die Verwendung von Multiplex-Fluoreszenz-Lebendzell-Imaging zur gleichzeitigen kinetischen Beurteilung verschiedener Organoid-Phänotypen.

Abstract

Patient-Derived Organoid (PDO) Modelle von Krebs sind ein multifunktionales Forschungssystem, das menschliche Krankheiten im Vergleich zu Krebszelllinien besser rekapituliert. PDO-Modelle können erzeugt werden, indem Tumorzellen von Patienten in extrazellulären Basalmembranextrakten (BME) kultiviert und als dreidimensionale Kuppeln plattiert werden. Kommerziell erhältliche Reagenzien, die für phänotypische Assays in Monolayer-Kulturen optimiert wurden, sind jedoch oft nicht mit BME kompatibel. Hier beschreiben wir eine Methode zur Platte von PDO-Modellen und zur Bewertung von Arzneimittelwirkungen mit einem automatisierten Lebendzell-Bildgebungssystem. Darüber hinaus verwenden wir Fluoreszenzfarbstoffe, die mit kinetischen Messungen kompatibel sind, um die Zellgesundheit und Apoptose gleichzeitig zu quantifizieren. Die Bilderfassung kann so angepasst werden, dass sie in regelmäßigen Zeitabständen über mehrere Tage erfolgt. Benutzer können Arzneimittelwirkungen in einzelnen Z-Ebenenbildern oder einer Z-Projektion von Serienbildern aus mehreren Brennebenen analysieren. Mit Hilfe der Maskierung werden bestimmte Parameter von Interesse berechnet, wie z. B. PDO-Zahl, Fläche und Fluoreszenzintensität. Wir liefern Proof-of-Concept-Daten, die die Wirkung von Zytostatika auf die Zellgesundheit, Apoptose und Lebensfähigkeit demonstrieren. Diese automatisierte kinetische Bildgebungsplattform kann auf andere phänotypische Messwerte erweitert werden, um verschiedene therapeutische Effekte in PDO-Modellen von Krebs zu verstehen.

Introduction

Von Patienten stammende Tumororganoide (PDOs) entwickeln sich schnell zu einem robusten Modellsystem zur Untersuchung der Krebsentwicklung und des therapeutischen Ansprechens. PDOs sind dreidimensionale (3D) Zellkultursysteme, die das komplexe genomische Profil und die Architektur des Primärtumors rekapitulieren 1,2. Im Gegensatz zu herkömmlichen zweidimensionalen (2D) Kulturen immortalisierter Krebszelllinien erfassen und erhalten PDOs die intratumorale Heterogenität 3,4, was sie zu einem wertvollen Werkzeug sowohl für die mechanistische als auch für die translationale Forschung macht. Obwohl PDOs ein immer beliebteres Modellsystem werden, sind kommerziell erhältliche Reagenzien und Analysemethoden für zelluläre Effekte, die mit PDO-Kulturen kompatibel sind, begrenzt.

Der Mangel an robusten Methoden zur Analyse subtiler Veränderungen des Behandlungsansprechens behindert die klinische Umsetzung. Das Goldstandard-Reagenz für die Zellgesundheit in 3D-Kulturen, CellTiter-Glo 3D, verwendet den ATP-Spiegel als Determinante für die Zellviabilität 5,6. Obwohl dieses Reagenz für Endpunkt-Assays nützlich ist, gibt es mehrere Vorbehalte, vor allem die Unfähigkeit, Proben nach Abschluss des Assays für andere Zwecke zu verwenden.

Die Lebendzellbildgebung ist eine ausgeklügelte Form der kinetischen Mikroskopie, die in Kombination mit fluoreszierenden Reagenzien in der Lage ist, eine Vielzahl von Messwerten für die Zellgesundheit innerhalb von PDO-Modellen zu quantifizieren, einschließlich Apoptose 7,8,9 und Zytotoxizität10. In der Tat war die Bildgebung lebender Zellen ein wesentlicher Bestandteil des Hochdurchsatz-Screenings von Verbindungen in 2D-Plattformen11,12. Systeme wie der Incucyte haben die Technologie erschwinglich und damit für Forschungsgruppen in einer Vielzahl von Umgebungen zugänglich gemacht. Die Anwendung dieser Systeme zur Analyse von 3D-Kulturen steckt jedoch noch in den Kinderschuhen.

Hier beschreiben wir eine Methode zur Bewertung des Ansprechens auf Medikamente in PDO-Modellen von Krebs unter Verwendung von Multiplex-Lebendzell-Bildgebung (Abbildung 1). Durch die Analyse von Hellfeldbildern können Veränderungen der PDO-Größe und -Morphologie kinetisch überwacht werden. Darüber hinaus können zelluläre Prozesse gleichzeitig im Zeitverlauf mit fluoreszierenden Reagenzien wie Annexin V Red Dye für Apoptose und Cytotox Green Dye für Zytotoxizität quantifiziert werden. Die vorgestellten Methoden sind für das Lebendzell-Bildgebungssystem Cytation 5 optimiert, aber dieses Protokoll kann an verschiedene Lebendzell-Bildgebungsplattformen angepasst werden.

Protocol

Studien mit menschlichen Tumorproben wurden vom University of Iowa Institutional Review Board (IRB), Protokoll #201809807, überprüft und genehmigt und in Übereinstimmung mit den ethischen Standards durchgeführt, wie sie in der Helsinki-Erklärung von 1964 und ihren späteren Änderungen festgelegt sind. Die Einverständniserklärung wurde von allen an der Studie teilnehmenden Probanden eingeholt. Einschlusskriterien sind unter anderem die Diagnose Krebs und die Verfügbarkeit von Tumorproben. <p class="jove_title…

Representative Results

Unser Ziel war es, die Machbarkeit der Verwendung von Multiplex-Lebendzell-Imaging zur Beurteilung des PDO-Therapieansprechens zu demonstrieren. Proof-of-Concept-Experimente wurden in zwei separaten PDO-Modellen des Endometriumkarzinoms durchgeführt: ONC-10817 und ONC-10811 (siehe ergänzende Abbildung 1 und ergänzende Abbildung 2 für ONC-10811-Daten). Apoptose (Annexin-V-Färbung) und Zytotoxizität (Cytotox Green-Aufnahme) wurden als Reaktion auf den Apoptose-induzierenden Wirkstoff…

Discussion

PDO-Kulturen werden aufgrund ihrer Fähigkeit, zelluläre Reaktionen und Verhaltensweisen widerzuspiegeln, zu einem immer beliebteren In-vitro-Modellsystem2. Bedeutende Fortschritte wurden bei der Erzeugung, Kultur und Expansion von PDO-Techniken erzielt, aber Methoden zur Analyse therapeutischer Reaktionen hinken hinterher. Kommerziell erhältliche 3D-Viabilitätskits sind lytische Endpunkt-Assays, bei denen potenziell wertvolle Daten zur kinetischen Reaktion fehlen und nachfolgende Analysen durc…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Wir danken dem Tissue Procurement Core und Dr. Kristen Coleman von der University of Iowa für die Bereitstellung von Tumorproben und Dr. Sofia Gabrilovich in der Abteilung für Geburtshilfe und Gynäkologie für die Unterstützung bei der PDO-Modellgenerierung. Wir danken auch Dr. Valerie Salvatico (Agilent, USA) für die kritische Analyse des Manuskripts. Wir erkennen die folgenden Finanzierungsquellen an: NIH/NCI CA263783 und DOD CDMRP CA220729P1 an KWT; Cancer Research UK, Prostate Cancer UK, Prostate Cancer Foundation und Medical Research Council an JSdB. Die Geldgeber hatten keine Rolle bei der Planung oder Analyse von Experimenten oder der Entscheidung zur Veröffentlichung.

Materials

1.5 mL microcentrfuge tube Dot Scientific Inc 1008113
15 mL conical centrifuge tube Sarstedt 62.554.100
554 NM LED Cube Agilent 1225012
96-well plate Corning Costar 3596 Prewarmed to 37 °C
96-well plate Agilent 204626-100 Prewarmed to 37 °C
A83-01 Tocris 2939 Final concentration is 500 nM (component of organoid culture media)
Advanced DMEM/F-12 Gibco 12634-010 component of organoid culture media
B27 Supplement Gibco 17504044 Final concentration is 1x (component of organoid culture media)
BioTek BioSpa 8 Automated Incubator Agilent BIOSPAG-SN Tabletop incubator; BioSpa OnDemand scheduling software comunicates with Gen5 to transfer plates between the BioSpa and the Cytation 5 for imaging (this protocol uses version 1.01.10)
BioTek Cytation 5 Cell Imaging Multimode Reader Agilent CYT5PW-SN Plate reader; Gen5 software is used for this device (this protocol uses version 3.12.08)
Cultrex UltiMatrix Reduced Growth Factor Basement Membrane Extract R&D Systems BME001-10
Daunorubicin HCl Sigma-Aldrich S3035 Reconstituted in DMSO
Dimethyl sulfoxide Sigma-Aldrich D2438
EDTA (0.5 M) Thermo Fisher AM9260G
Forskolin Tocris 1099 Final concentration is 10 µM (component of organoid culture media)
Glutamax Gibco 35050-061 Final concentration is 1x (component of organoid culture media)
HEPES Gibco 15630-080 Final concentration is 10 mM (component of organoid culture media)
Human EGF, Animal-Free Recombinant Protein Gibco AF-100-15-1MG Final concentration is 0.5 ng/mL (component of organoid culture media)
Human FGF-10 Recombinant Protein Gibco 100-26-1MG Final concentration is 10 ng/mL (component of organoid culture media)
Human R-Spondin 1 Recombinant Protein Gibco 120-38-5UG Final concentration is 250 ng/mL (component of organoid culture media)
Hydrocortisone Stock Solution StemCell Technologies 7926 Final concentration is 500 ng/mL (component of organoid culture media)
Imaging Filter Cube- GFP Agilent 1225101
Imaging Filter Cube- TRITC Agilent 1225125
Imaging LED GFP/CFP Agilent 1225001
Incucyte Annexin V Red Dye Sartorius 4641 Reconstituted in organoid culture media
Incucyte Cytotox Green Dye Sartorius 4633 DMSO solution
N-Acetyl-L-cysteine Sigma-Aldrich A7250 Final concentration is 1.25 mM (component of organoid culture media)
Nexcelom Bioscience ViaStain AOPI Staining Solution Fisher-Scientific 13366169 Add 1:50 volume
Nicotinamide Sigma-Aldrich N0636 Final concentration is 10 mM (component of organoid culture media)
Noggin R&D Systems 6057-NG Final concentration is 100 ng/mL (component of organoid culture media)
Penicillin-Streptomycin Gibco 15140122 Final concentration is 10 units/mL (component of organoid culture media)
Phosphate Buffered Saline (1x) Gibco 14190-144
Primocin InvivoGen ant-pm-05 Final concentration is 100 µg/mL (component of organoid culture media)
Recombinant Human Heregulinβ-1 Pepro Tech 100-03 Final concentration is 37.5 ng/mL (component of organoid culture media)
Staurosporine solution from Streptomyces sp. Sigma-Aldrich S6942
TrypLE Express Life Technologies 12604013
Y-27632, CAS 331752-47-7 Sigma-Aldrich 688000 Final concentration is 5 µM (component of organoid culture media)
β-Estradiol Sigma-Aldrich E2758 Final concentration is 100 nM (component of organoid culture media)

Referenzen

  1. Drost, J., Clevers, H. Organoids in cancer research. Nat Rev Cancer. 18 (7), 407-418 (2018).
  2. Lohmussaar, K., Boretto, M., Clevers, H. Human-derived model systems in gynecological cancer research. Trends Cancer. 6 (12), 1031-1043 (2020).
  3. Sachs, N., et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 172 (1-2), 373-386 (2018).
  4. de Witte, C. J., et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter- and intrapatient drug responses. Cell Rep. 31 (11), 107762 (2020).
  5. Adan, A., Kiraz, Y., Baran, Y. Cell proliferation and cytotoxicity assays. Curr Pharm Biotechnol. 17 (14), 1213-1221 (2016).
  6. Driehuis, E., Kretzschmar, K., Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc. 15 (10), 3380-3409 (2020).
  7. Alzeeb, G., et al. Gastric cancer cell death analyzed by live cell imaging of spheroids. Sci Rep. 12 (1), 1488 (2022).
  8. Deben, C., et al. OrBITS: label-free and time-lapse monitoring of patient derived organoids for advanced drug screening. Cell Oncol (Dordr). 46 (2), 299-314 (2023).
  9. Tamura, H., et al. Evaluation of anticancer agents using patient-derived tumor organoids characteristically similar to source tissues). Oncol Rep. 40 (2), 635-646 (2018).
  10. Le Compte, M., et al. Multiparametric tumor organoid drug screening using widefield live-cell imaging for bulk and single-organoid analysis. J Vis Exp. 190, 64434 (2022).
  11. Hanson, K. M., Finkelstein, J. N. An accessible and high-throughput strategy of continuously monitoring apoptosis by fluorescent detection of caspase activation. Anal Biochem. 564-565, 96-101 (2019).
  12. Isherwood, B., et al. Live cell in vitro and in vivo imaging applications: accelerating drug discovery. Pharmaceutics. 3 (2), 141-170 (2011).
  13. Bi, J., et al. Successful patient-derived organoid culture of gynecologic cancers for disease modeling and drug sensitivity testing. Cancers (Basel). 13 (12), 2901 (2021).
  14. Binaschi, M., Zunino, F., Capranico, G. Mechanism of action of DNA topoisomerase inhibitors. Stem Cells. 13 (4), 369-379 (1995).
  15. Park, Y. Y., Ahn, J. H., Cho, M. G., Lee, J. H. ATP depletion during mitotic arrest induces mitotic slippage and APC/C(Cdh1)-dependent cyclin B1 degradation. Exp Mol Med. 50 (4), 1-14 (2018).
  16. Lukonin, I., Zinner, M., Liberali, P. Organoids in image-based phenotypic chemical screens. Exp Mol Med. 53 (10), 1495-1502 (2021).
  17. Herpers, B., et al. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR x LGR5 bispecific antibody with efficacy in epithelial tumors. Nat Cancer. 3 (4), 418-436 (2022).
  18. Ramm, S., et al. High-throughput live and fixed cell imaging method to screen matrigel-embedded organoids. Organoids. 2 (1), 1-19 (2023).
  19. Dekkers, J. F., et al. High-resolution 3D imaging of fixed and cleared organoids. Nat Protoc. 14 (6), 1756-1771 (2019).
  20. Van Hemelryk, A., et al. Viability analysis and high-content live-cell imaging for drug testing in prostate cancer xenograft-derived organoids. Cells. 12 (10), 1377 (2023).
  21. Bi, J., et al. Advantages of tyrosine kinase anti-angiogenic cediranib over bevacizumab: Cell cycle abrogation and synergy with chemotherapy. Pharmaceuticals (Basel). 14 (7), 682 (2021).
  22. Bi, J., et al. Blocking autophagy overcomes resistance to dual histone deacetylase and proteasome inhibition in gynecologic cancer). Cell Death Dis. 13 (1), 59 (2022).
  23. Guo, C., et al. B7-H3 as a Therapeutic target in advanced prostate cancer. Eur Urol. 83 (3), 224-238 (2023).
  24. Gil, V., et al. HER3 is an actionable target in advanced prostate cancer. Cancer Res. 81 (24), 6207-6218 (2021).

Play Video

Diesen Artikel zitieren
Colling, K. E., Symons, E. L., Buroni, L., Sumanasiri, H. K., Andrew-Udoh, J., Witt, E., Losh, H. A., Morrison, A. M., Leslie, K. K., Dunnill, C. J., de Bono, J. S., Thiel, K. W. Multiplexed Live-Cell Imaging for Drug Responses in Patient-Derived Organoid Models of Cancer. J. Vis. Exp. (203), e66072, doi:10.3791/66072 (2024).

View Video