Генетически кодируемые кальциевые индикаторы (GECI) позволяют проводить надежный анализ сигналов сенсорных нейронов на популяционном уровне. Здесь мы разработали новый подход, который позволяет визуализировать in vivo активность нейронов тройничных ганглиев крыс.
Генетически кодируемые индикаторы кальция (GECI) позволяют использовать методы визуализации для мониторинга изменений внутриклеточного кальция в целевых клеточных популяциях. Их большое соотношение сигнал/шум делает GECI мощным инструментом для обнаружения вызванной стимулом активности в сенсорных нейронах. GECI облегчают популяционный анализ кодирования стимулов с количеством нейронов, которые могут быть изучены одновременно. Это популяционное кодирование наиболее целесообразно выполнять in vivo. Ганглии дорсальных корешков (DRG), в которых находятся сомы сенсорных нейронов, иннервирующих соматические и висцеральные структуры ниже шеи, наиболее широко используются для визуализации in vivo , поскольку доступ к этим структурам относительно прост. Совсем недавно эта методика была использована на мышах для изучения сенсорных нейронов в тройничном ганглии (ТГ), которые иннервируют ротовые и черепно-лицевые структуры. Существует множество причин для изучения ТГ в дополнение к DRG, включая длинный список болевых синдромов, специфичных для оральных и черепно-лицевых структур, которые, по-видимому, отражают изменения в активности сенсорных нейронов, такие как невралгия тройничного нерва. Мыши наиболее широко используются при изучении нейронов DRG и TG из-за доступности генетических инструментов. Тем не менее, учитывая различия в размерах, простоте обращения и потенциально важные видовые различия, есть причины изучать TG-нейроны крыс, а не мышей. Таким образом, нами был разработан подход к визуализации TG-нейронов крыс in vivo. Мы вводили новорожденным щенкам (p2) внутрибрюшинно AAV, кодирующий GCaMP6s, что приводило к >90% инфицированию нейронов TG и DRG. ТГ визуализировалась у взрослого человека после трепанации черепа и декортикации, а изменения флуоресценции GCaMP6s отслеживались в нейронах ТГ после стимуляции нижнечелюстной и верхнечелюстной областей лица. Мы подтвердили, что увеличение флуоресценции было вызвано стимулом при блокаде периферических нервов. Несмотря на то, что этот подход имеет множество потенциальных применений, мы используем его для характеристики субпопуляции (популяций) нейронов ТГ, измененных после повреждения периферических нервов.
Соматоощущение, нейронное кодирование механических, тепловых и химических раздражителей, воздействующих на кожу или другие структуры организма, включая мышцы, кости и внутренние органы, начинается с активности первичных афферентных нейронов, которые иннервируютэти структуры. Электрофизиологические подходы, основанные на единичных единицах, предоставили огромное количество информации о афферентных подтипах, участвующих в этом процессе, а также о том, как их свойства стимул-реакция могут изменяться с течением времени 1,2,3. Тем не менее, несмотря на то, что остаются убедительные доказательства в поддержку теории меченых линий, которая предполагает, что специфические сенсорные модальности передаются определенными субпопуляциями нейронов, способность многих субпопуляций нейронов реагировать на одни и те же типы механических, тепловых и химических стимулов предполагает, что большинство соматосенсорных стимулов кодируются несколькими субпопуляциями нейронов. 5. См. Таким образом, лучшее понимание соматочувствительности придет только при условии одновременного изучения активности 10, если не сотен, нейронов.
Прогресс в оптических подходах с относительно недавним появлением конфокальных и, впоследствии, многофотонных и цифровых методов визуализации облегчил возможность проведения относительно неинвазивного анализа активности нейронов на популяционном уровне 6,7. Одним из последних препятствий в применении этой технологии стала разработка инструментов, позволяющих проводить оптическую оценку нейронной активности. Учитывая скорость потенциала действия, которая может начинаться и заканчиваться менее чем за миллисекунду, чувствительный к напряжению краситель, способный следовать за изменениями мембранного потенциала со скоростью потенциала действия, был бы идеальным инструментом для этой цели. Но, несмотря на то, что в этой области был достигнут огромный прогресс(7,8,9,10), отношение сигнал/шум для многих из этих красителей все еще недостаточно велико, чтобы можно было провести популяционный анализ сотен нейронов на уровне отдельных клеток. В качестве альтернативного подхода исследователи обратились к мониторингу изменений внутриклеточной концентрации Ca2+ ([Ca2+]i). Ограничения этой стратегии были очевидны с самого начала и включают в себя тот факт, что увеличение [Ca2+]i является косвенной мерой нейронной активности11; что увеличение [Ca2+]i может происходить независимо от притокаCa2+, связанного с активацией потенциал-зависимых каналовCa2+ (VGCC)12,13; что величина и продолжительность переходного процесса Ca2+ могут контролироваться процессами, независимыми от активности VGCC 11,12,14; и что временной ход переходных процессов Ca2+ намного превышает ход потенциала действия15. Тем не менее, существует ряд существенных преимуществ, связанных с использованием Ca2+ в качестве косвенного показателя нейронной активности. Не последнее место среди них занимает отношение сигнал/шум, связанное с большинством индикаторов Ca2+, отражающее как величину изменения внутриклеточногоCa2+, так и тот факт, что сигнал возникает из трехмерного пространства цитозоля, а не из двумерного пространства клеточной мембраны. Кроме того, с разработкой генетически кодируемых индикаторов Ca2+ (GECI) стало возможным использовать преимущества генетических стратегий для стимулирования экспрессии индикаторов Ca2+ в конкретных субпопуляциях клеток, облегчая анализ на популяционном уровне интактных препаратов (см., например,16).
Учитывая количество генетических инструментов, доступных в настоящее время у мышей, неудивительно, что GECI наиболее широко использовались у этого вида. Разработаны линии мышей с конститутивной экспрессией GECI в субпопуляциях сенсорных нейронов 7,16,17. С развитием мышиных линий, экспрессирующих рекомбиназы в определенных типах клеток, стало возможным использовать еще более сложные стратегии для контроля экспрессии GECI15. Однако, несмотря на то, что эти инструменты становятся все более мощными, существует ряд причин, по которым другие виды, такие как крысы, могут быть более подходящими для некоторых экспериментальных вопросов. К ним относятся больший размер, облегчающий ряд экспериментальных манипуляций, которые трудны, если не невозможны, на меньшей мыши; легкость обучения крыс относительно сложным поведенческим задачам; и, по крайней мере, некоторые доказательства того, что биофизические свойства и паттерны экспрессии нескольких ионных каналов в сенсорных нейронах крыс могут быть более похожи на те, которые наблюдаются в сенсорных нейронах человека, чем те же каналы у мышей по сравнениюс человеческими.
В то время как трансдукция соматосенсорных стимулов обычно происходит в периферических терминалях первичных афферентов, потенциал действия, инициированный на периферии, должен пройти через структуру, в которой находятся первичные афферентные соматы, называемые дорсальными корешками (DRG) или тройничным (TG) ганглиями, прежде чем достичь центральнойнервной системы. Хотя имеются доказательства того, что не каждый потенциал действия, распространяющийся вдоль первичного афферентного аксона, вторгается в тело клетки20, вследствие того факта, что первичные афферентные соматы соединены с главным афферентным аксоном через Т-соединение19, большинство потенциалов действия, инициированных на периферии, по-видимому, вторгаются в сому21. Это дает три экспериментальных преимущества при использовании GECI для оценки популяционного кодирования в первичных афферентах: большой размер тела клетки по отношению к аксонам еще больше увеличивает сигнал/шум при использовании [Ca2+]i в качестве косвенной меры афферентной активности; DRG, как правило, легко доступны; А оценка активности в участке, который пространственно удален от афферентных окончаний, сводит к минимуму потенциальное влияние операции, необходимой для обнажения ганглиесов, на свойства стимул-реакция афферентных окончаний. Однако, поскольку ТГ расположены под мозгом (или над палитрой), к ним гораздо труднее получить доступ, чем к DRG. Кроме того, несмотря на то, что между нейронами DRG и TG есть много общего, список различий также растет. Это включает в себя грубо соматотопическую организацию нейронов в TG22, уникальные иннервированные структуры, различные паттерны окончания центральных концов 23,24,25,26, а теперь и растущий список различий как в экспрессии генов27,28, так и в экспрессии функциональных рецепторов29. Кроме того, поскольку мы заинтересованы в идентификации периферических механизмов боли, относительно большое количество болевых синдромов, которые, по-видимому, являются уникальными для тройничной системы (например, мигрень, невралгия тройничного нерва, синдром жжения во рту), которые, по-видимому, включают аберрантную активность в первичных афферентах 30,31,32, позволяет предположить, что ТГ необходимо изучать напрямую.
Таким образом, несмотря на то, что свойства ТГ-нейронов типа «стимул-реакция» были изучены с помощью ГЭСИ у мыши16, поскольку перечисленные выше причины позволяют предположить, что крыса может быть более подходящим видом для решения различных экспериментальных вопросов, целью настоящего исследования была разработка подхода к использованию ГЭСИ для изучения нейронов ТГ у крысы. Для достижения этой цели мы использовали вирусный подход, чтобы стимулировать экспрессию GECI GCaMP6 в периферической нервной системе. Затем мы удалили передний мозг, чтобы обеспечить доступ к ТГ. Наконец, механические и тепловые стимулы были приложены к лицу, в то время как нейронные реакции оценивались под флуоресцентной микроскопией. В совокупности эти данные подтверждают роль крысы в исследовании изменений в ТГ при многих состояниях, расширяя инструментарий для исследователей, заинтересованных в сенсорном кодировании в тройничном нерве.
Здесь мы демонстрируем быстрый, неинвазивный способ создания крысы GECI для визуализации ТГ. Мы выбрали CAG-промотор для стимулирования и поддержания высокого уровня экспрессии генов. В то время как предыдущие исследования показывают, что другие серотипы AAV могут эффективно управлять экс…
The authors have nothing to disclose.
Мы хотели бы поблагодарить докторов Кэти Альберс и Брайана Дэвиса за использование их микроскопа Leica и программы Metamorph, Чарльза Уорвика за помощь в создании нашего теплового устройства Пельтье и доктора Раймонда Секулу за помощь в устранении неполадок в хирургической подготовке. Эта работа была поддержана грантами Национальных институтов здравоохранения: F31NS125993 (JYG), T32NS073548 (JYG) и R01NS122784 (MSG и RS).
AAV9-CAG-WPRE-GCaMP6s-SV40 | Addgene | 100844-AAV9 | AAV9-GCaMP6s virus |
ACEpromazine maleate | Covetrus | 11695-0095-5 | 10 mg/mL |
AnaSed (Xylazine) injection | AKORN Animal Health | 23076-35-9 | 20 mg/mL |
CTR5500 Electronics box | Leica | 11 888 820 | Power Supply |
Cutwell burr drill bit | Ransom & Randolph | ¼ round | |
DM 6000 FS | Leica | 11 888 928 | Base Stand |
EL6000 | Leica | EL6000 | Light source with 120 W mercury bulb |
Forceps | FST | 11252-00 | Dumont No. 05 |
Friedman rongeurs | FST | 16000-14 | 2.5 mm cup size |
Friedman-Pearson rongeurs | FST | 16021-14 | 1 mm cup size |
Heating pad (Temperature therapy pad) | STRYKER | 8002-062-022 | |
Ketamine hydrochloride | Covetrus | 1695-0703-1 | 100 mg/mL |
Plan Fluor 20x/0.40 | Leica | MRH00105 | 20x objective, 0.4 NA10.8 mm WD |
Power handle high-temp cautery pen | Bovie | HIT1 | handheld Change-A-Tip cautery pen |
Prime 95B | Photometrics | Prime 95B | CMOS Camera |
Saline | Fisher Scientific | NC0291799 | 0.9% Sterile Saline |
Scalpel blade | Fisher Scientific | 22-079-701 | size 15 disposable blade |
Spatula | BRI | 48-1460 | brain spatula |
Spring scissors | FST | 91500-09 | Student Vannas, 5 mm cutting edge |
Spring scissors | FST | 15012-12 | Noyes, 14 mm cutting edge |
STP6000 Smart touch panel | Leica | 11 501 255 | Control Panel |
Syringe | Hamilton | 80201 | 25 μL Model 1702 Luer Tip syringe |
Water heater | Adroit | HTP-1500 |