Summary

在半工业化高速率藻类池塘中使用微藻细菌系统进行沼气净化

Published: March 22, 2024
doi:

Summary

空气污染影响所有生物的生活质量。在这里,我们描述了微藻生物技术用于处理沼气(同时去除二氧化碳和硫化氢)和通过半工业开放式高速率藻池生产生物甲烷,以及随后分析处理效率、pH 值、溶解氧和微藻生长。

Abstract

近年来,出现了许多将沼气净化为生物甲烷的技术。这种净化需要降低二氧化碳和硫化氢等污染气体的浓度,以增加甲烷的含量。在这项研究中,我们使用微藻培养技术来处理和净化养猪业有机废物产生的沼气,以获得即用型生物甲烷。为了进行栽培和纯化,在墨西哥拉各斯的圣胡安德洛斯建立了两个22.2 m3 的开放式池塘光生物反应器,并配有吸收-解吸塔系统。测试了几种再循环液体/沼气比 (L/G),以获得最高的去除效率;测量了其他参数,例如pH值,溶解氧(DO),温度和生物量增长。最有效的L/Gs为1.6和2.5,处理后的沼气出水在CO2中的成分分别为6.8%vol和6.6%vol,H2S的去除效率高达98.9%,O2 污染值保持在2%vol以下。我们发现,在培养过程中,pH 值在很大程度上决定了 CO2 的去除,比 L/G 更重要,因为它参与了微藻的光合作用过程,并且由于其酸性而在溶解时能够改变 pH 值。DO和温度分别从光合作用的明暗自然周期和一天中的时间中振荡。生物量的生长随CO2 和养分喂养以及反应器收获而变化;然而,这一趋势仍然为增长做好了准备。

Introduction

近年来,出现了几种技术将沼气提纯为生物甲烷,促进其作为非化石燃料的使用,从而减少不可排放的甲烷排放1。空气污染是一个影响世界大多数人口的问题,特别是在城市化地区;最终,世界上大约 92% 的人口呼吸着受污染的空气2.在拉丁美洲,空气污染率主要是由燃料的使用造成的,2014 年,48% 的空气污染是由电力和热力生产部门造成的3.

在过去的十年中,越来越多的关于空气中污染物与死亡率上升之间关系的研究被提出,认为这两个数据集之间存在很强的相关性,特别是在儿童群体中。

为了避免空气污染的持续存在,已经提出了几种策略;其中之一是使用可再生能源,包括风力涡轮机和光伏电池,这减少了释放到大气中的二氧化碳4,5另一种可再生能源来自沼气,沼气是有机物厌氧消化的副产品,与液态有机沼渣一起产生6。这种气体由气体混合物组成,其比例取决于用于厌氧消化的有机物来源(污水污泥、牛粪或农工生物废物)。通常,这些比例是 CH4 (53%-70%vol)、CO2 (30%-47%vol)、N2 (0%-3%vol)、H2O (5%-10%vol)、O2 (0%-1%vol)、H2S (0-10,000 ppmv)、NH3 (0-100 ppmv)、碳氢化合物 (0-200 mg/m3) 和硅氧烷 (0-41 mg/m37,8,9,科学界对甲烷气体感兴趣,因为这是混合物的可再生能量成分。

然而,沼气不能简单地燃烧,因为反应的副产物可能是有害的和污染的;这就需要对混合物进行处理和净化,以增加甲烷的百分比并减少其余部分,从根本上将其转化为生物甲烷10。此过程也称为升级。尽管目前有用于这种处理的商业技术,但这些技术在经济和环境方面存在一些缺点11,12,13。例如,活性炭和水洗涤 (ACF-WS)、压力水洗 (PWS)、气体渗透 (GPHR) 和变压吸附 (PSA) 的系统在环境影响方面存在一些经济或其他缺点。一个可行的替代方案(图1)是使用生物系统,例如将微藻和光生物反应器中生长的细菌结合在一起的系统;一些优点包括设计和操作的简单性、低运行成本以及其环保的操作和副产品10,13,14。当沼气被提纯为生物甲烷时,后者可以用作天然气的替代品,并且沼渣可以作为营养物质的来源来支持系统中微藻的生长10

由于较低的运营成本和所需的最少投资资本,因此在该升级程序中广泛使用的一种方法是在开放式滚道光反应器中与吸收塔结合微藻的生长6.该应用最常用的滚道反应器类型是高速藻类池(HRAP),它是一个浅水道池,藻类汤的循环通过低功率桨轮14发生。这些反应堆需要大面积的安装,如果在室外条件下使用,非常容易受到污染;在沼气净化过程中,建议使用碱性条件(pH > 9.5)和在较高pH值下茁壮成长的藻类物种,以增强CO2和H2S的去除,同时避免污染15,16

本研究旨在使用 HRAP 光生物反应器结合吸收-解吸塔系统和微藻联盟确定沼气处理效率和生物甲烷的最终生产。

Protocol

1. 系统设置 注意: 本协议中描述的系统的管道和仪表图 (P&ID) 如 图 2 所示。 反应器设置通过平整和压实地面来准备地面,以提高反应堆的稳定性。 在空旷的场地上,从末端挖两个细长的孔和 3 m 处,进一步挖一个 3 m2 和 1 m 深的孔(称为曝气井)。 在土工膜覆盖的金属支架上放置两个HRAP(<strong cla…

Representative Results

按照协议,该系统被构建、测试和接种。测量和储存条件,采集和分析样品。该协议执行了一年,从 2019 年 10 月开始,一直持续到 2020 年 10 月。值得一提的是,从这里开始,HRAP 将被称为 RT3 和 RT4。 生物甲烷生产力为了确定促进最高 H2S 和 CO2 去除以及因此达到最高甲烷浓度的条件,在 0.5 至 3.4 的范围内尝试了几种再循环液体/沼气比 (L/G)?…

Discussion

多年来,这种藻类技术已经过测试,并被用作净化沼气的苛刻而昂贵的物理化学技术的替代品。特别是, 节肢螺旋 体属与 小球藻一起被广泛用于这一特定目的。然而,很少有半工业化规模的方法,这为这一过程增加了价值。

通过使用适当的 L/G 比来保持较低的 O2 浓度至关重要;但是,这取决于将应用此协议的区域。由于管道中存在爆炸和腐蚀的风险,?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

我们感谢DGAPA墨西哥国立自治大学项目编号IT100423提供部分资金。我们还要感谢PROAN和GSI允许我们分享有关其光合沼气升级全面安装的技术经验。非常感谢佩德罗·埃尔南德斯·格雷罗牧师、卡洛斯·马丁·西加拉、胡安·弗朗西斯科·迪亚斯·马尔克斯、玛格丽塔·伊丽莎白·西斯内罗斯·奥尔蒂斯、罗伯托·索特罗·布里奥内斯·门德斯和丹尼尔·德洛斯·科沃斯·瓦斯孔塞洛斯的技术支持。这项研究的一部分是在IINAM环境工程实验室完成的,并获得了ISO 9001:2015证书。

Materials

1" rotameter CICLOTEC N/A
1" rotameter GPI A10-LMA100IA1
Absorption tank EFISA Made under previous design
Air blower (2.35 HP) Elmo Rietschle 2BH11007AH01
Biogas blower (2 HP) Elmo Rietschle 2BH11007AH01
Biogas composition measure Geotech BIOGAS 5000
Data-acquisition device LabJack Co. U3-LV
Diffuser tubes Aero-Tube C3060AR
DO sensor Applisens Z10023525
Dodecahydrated trisodium phosphate  Quimica PIMA N/A Fertilizer grade (greenhouse and experior use)
Dodecahydrated trisodium phosphate  Fermont 35963 Analytical grade (Used in cultures inside the laboratory)
Durapore membrane (45 µm) MerckMillipore HVLP04700 
Electric motor 1.5 HP Weg 00158ET3ERS56C
Ferrous sulfate heptahydrate Agroquimica Samet N/A Fertilizer grade (greenhouse and experior use)
Ferrous sulfate heptahydrate Fermont 63593 Analytical grade (Used in cultures inside the laboratory)
Geomembrane GEOSINCERE N/A
Magnesium sulfate heptahydrate Tepeyac N/A Fertilizer grade (greenhouse and experior use)
Magnesium sulfate heptahydrate Fermont 63623 Analytical grade (Used in cultures inside the laboratory)
Paddle wheel GSI Made under previous design
pH sensor Van London pHoenix 715-772-0041
Portable screen Rasspberry Pi 3 B+
Recirculation centrifugal pump (1.5 HP) Aquapak  ALY 15
Sodium bicarbonate Industria del alcali N/A Fertilizer grade (greenhouse and experior use)
Sodium bicarbonate Fermont 12903 Analytical grade (Used in cultures inside the laboratory)
Sodium chloride Sal Colima N/A Fertilizer grade (greenhouse and experior use)
Sodium chloride Fermont 24912 Analytical grade (Used in cultures inside the laboratory)
Sodium nitrate Vitraquim N/A Fertilizer grade (greenhouse and experior use)
Sodium nitrate Fermont 41903 Analytical grade (Used in cultures inside the laboratory)
Storing program (pH, DO)  Python Software Foundation  Python IDLE 2.7
Tedlar bags SKC Inc. 232-25
Temperature recorder T&D TR-52i
UV-Vis Spectrophotometer ThermoFisher Scientific instrument GENESYS 10S 
Vacuum pump EVAR EV-40

Referenzen

  1. Muñoz, R., Meier, L., Diaz, I., Jeison, D. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev Environ Sci Biotechnol. 14, 727-759 (2015).
  2. Karimi, B., Shokrinezhad, B. Air pollution and mortality among infant and children under five years: A systematic review and meta-analysis. Atmospheric Pollut Res. 11 (6), 61-70 (2020).
  3. Koengkan, M., Fuinhas, J. A., Silva, N. Exploring the capacity of renewable energy consumption to reduce outdoor air pollution death rate in Latin America and the Caribbean region. Environ Sci Pollut Res. 28, 1656-1674 (2021).
  4. Alvarez-Herranz, A., Balsalobre-Lorente, D., Shahbaz, M., Cantos, J. M. Energy innovation and renewable energy consumption in the correction of air pollution levels. Energy Policy. 105, 386-397 (2017).
  5. Razmjoo, A., et al. A technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area. Renew Energy. 164, 46-57 (2021).
  6. Franco-Morgado, M., Tabaco-Angoa, T., Ramírez-García, M. A., González-Sánchez, A. Strategies for decreasing the O2 content in the upgraded biogas purified via microalgae-based technology. J Environ Manage. 279, 111813 (2021).
  7. Bailón, L., Hinge, J. . Report: Biogas and Bio-Syngas Upgrading. , (2012).
  8. Persson, M., Jonsson, O., Wellinger, A. Biogas Upgrading to Vehicle Fuel Standards and Grid Injection. Brochure of IEA Task 37. Energy from Biogas and Landfill Gas. , (2006).
  9. Soreanu, G., Béland, M., Falletta, P. Approaches concerning siloxane removal from biogas — a review. Canadian Biosystems Engineering. 53, 8.1-8.18 (2011).
  10. Toro-Huertas, E. I., Franco-Morgado, M., de los Cobos Vasconcelos, D., González-Sánchez, A. Photorespiration in an outdoor alkaline open-photobioreactor used for biogas upgrading. Sci Total Environ. 667, 613-621 (2019).
  11. Cozma, P., Wukovits, W., Mămăligă, I., Friedl, A., Gavrilescu, M. Modeling and simulation of high pressure water scrubbing technology applied for biogas upgrading. Clean Technol Environ Policy. 17, 373-391 (2015).
  12. Sheets, J. P., Shah, A. Techno-economic comparison of biogas cleaning for grid injection, compressed natural gas, and biogas-to-methanol conversion technologies: Techno-economic analysis of existing and emerging biogas upgrading technologies. Biofuels Bioprod Biorefining. 12, 412-425 (2018).
  13. Toledo-Cervantes, A., Estrada, J. M., Lebrero, R., Muñoz, R. A comparative analysis of biogas upgrading technologies: Photosynthetic vs physical/chemical processes. Algal Res. 25, 237-243 (2017).
  14. Marín, D., et al. Anaerobic digestion of food waste coupled with biogas upgrading in an outdoors algal-bacterial photobioreactor at pilot scale. Fuel. 324, 124554 (2022).
  15. Bahr, M., Díaz, I., Dominguez, A., González Sánchez, A., Muñoz, R. Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environ Sci Technol. 48 (1), 573-581 (2014).
  16. Franco-Morgado, M., Alcántara, C., Noyola, A., Muñoz, R., González-Sánchez, A. A study of photosynthetic biogas upgrading based on a high rate algal pond under alkaline conditions: Influence of the illumination regime. Sci Total Environ. 592, 419-425 (2017).
  17. . Manuel de culture artisanale de spiruline Available from: https://www.scribd.com/document/513003475/Manuel-de-Culture-Artisanale-de-Spiruline (2006)
  18. Lu, L., Yang, G., Zhu, B., Pan, K. A comparative study on three quantitating methods of microalgal biomass. Indian J Geo-Mar Sci. 46, 2265-2272 (2017).
  19. Sukarni, S. Thermogravimetric analysis of the combustion of marine microalgae Spirulina platensis and its blend with synthetic waste. Heliyon. 6 (9), e04902 (2020).
  20. Kundu, S., Zanganeh, J., Moghtaderi, B. A review on understanding explosions from methane-air mixture. J Loss Prev Process Ind. 40, 507-523 (2016).
  21. Serejo, M. L., et al. Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. Environ Sci Technol. 49 (5), 3228-3236 (2015).
  22. Toledo-Cervantes, A., Madrid-Chirinos, C., Cantera, S., Lebrero, R., Muñoz, R. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors. Bioresour Technol. 225, 336-342 (2017).
  23. Posadas, E., et al. Minimization of biomethane oxygen concentration during biogas upgrading in algal-bacterial photobioreactors. Algal Res. 12, 221-229 (2015).
  24. González Sánchez, A., FloresMárquez, T. E., Revah, S., Morgan Sagastume, J. M. Enrichment and cultivation of a sulfide-oxidizing bacteria consortium for its deploying in full-scale biogas desulfurization. Biomass Bioenergy. 66, 460-464 (2014).
  25. González-Sánchez, A., Posten, C. Fate of H2S during the cultivation of Chlorella sp. deployed for biogas upgrading. J Environ Manage. 191, 252-257 (2017).
  26. Hussain, F., et al. Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review. Renew Sustain Energy Rev. 137, 137 (2021).
  27. lvarez-González, A., et al. Can microalgae grown in wastewater reduce the use of inorganic fertilizers. J Environ Manage. 323, 116224 (2022).
  28. Deepika, P., MubarakAli, D. Production and assessment of microalgal liquid fertilizer for the enhanced growth of four crop plants. Biocatal Agric Biotechnol. 28, 101701 (2020).
  29. . Perspectives for a european standard on biomethane: a Biogasmax proposal Available from: https://trimis.ec.europa.eu/sites/default/files/project/documents/20120601_135059_69928_d3_8_new_lmcu_bgx_eu_standard_14dec10_vf__077238500_0948_26012011.pdf (2010)
  30. . Biomethane – Oxygen Content Assessment Available from: https://www.gasnetworks.ie/docs/corporate/gas-regulation/Oxygen-concentration-report-17985-AI-RPT-001-Rev-5-Biomethane-review-Penspen.pdf (2018)
  31. . European biomethane standards for grid injection and vehicle fuel use Available from: https://www.biosurf.eu/wordpress/wp-content/uploads/2015/06/9.-Arthur_Wellinger.pdf (2017)
  32. . NORMA Oficial Mexicana NOM-001-SECRE-2010, Especificaciones del gas natural (cancela y sustituye a la NOM-001-SECRE-2003, Calidad del gas natural y la NOM-EM-002-SECRE-2009, Calidad del gas natural durante el periodo de emergencia severa) Available from: https://www.dof.gob.mx/normasOficiales/3997/sener/sener.html (2010)
  33. Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C., Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ Sci. 14, 781-814 (2021).
  34. Masojídek, J., Torzillo, G., Koblížek, M. Photosynthesis in Microalgae. Handbook of Microalgal Culture. , (2013).
  35. Rendal, C., Witt, J., Preuss, T. G., Ashauer, R. A framework for algae modeling in regulatory risk assessment. Environ Toxicol Chem. 42 (8), 1823-1838 (2023).
  36. Alami, A. H., Alasad, S., Ali, M., Alshamsi, M. Investigating algae for CO2 capture and accumulation and simultaneous production of biomass for biodiesel production. Sci Total Environ. 759, 143529 (2021).

Play Video

Diesen Artikel zitieren
Vega Blanes, M., Pérez-Hermosillo, I. J., Ramírez Rueda, A., González Sánchez, A. Biogas Purification through the use of a Microalgae-Bacterial System in Semi-Industrial High Rate Algal Ponds. J. Vis. Exp. (205), e65968, doi:10.3791/65968 (2024).

View Video