Apresenta-se um protocolo de triagem de drogas de alto rendimento para melhorar o sono por meio do monitoramento do comportamento do sono de moscas-das-frutas em um modelo idoso de Drosophila .
O sono, um componente essencial da saúde e do bem-estar geral, frequentemente apresenta desafios para indivíduos mais velhos que frequentemente experimentam distúrbios do sono caracterizados por duração do sono encurtada e padrões fragmentados. Essas interrupções do sono também se correlacionam com um aumento do risco de várias doenças em idosos, incluindo diabetes, doenças cardiovasculares e distúrbios psicológicos. Infelizmente, as drogas existentes para distúrbios do sono estão associadas a efeitos colaterais significativos, como comprometimento cognitivo e dependência. Consequentemente, o desenvolvimento de medicamentos novos, mais seguros e mais eficazes para distúrbios do sono é urgentemente necessário. No entanto, o alto custo e a longa duração experimental dos métodos atuais de triagem de drogas permanecem como fatores limitantes.
Este protocolo descreve um método de triagem custo-efetivo e de alto rendimento que utiliza Drosophila melanogaster, uma espécie com um mecanismo de regulação do sono altamente conservado em comparação com mamíferos, tornando-se um modelo ideal para o estudo de distúrbios do sono em idosos. Ao administrar vários pequenos compostos a moscas envelhecidas, podemos avaliar seus efeitos sobre os distúrbios do sono. Os comportamentos de sono dessas moscas são registrados usando um dispositivo de monitoramento infravermelho e analisados com o pacote de dados de código aberto Sleep and Circadian Analysis MATLAB Program 2020 (SCAMP2020). Esse protocolo oferece uma abordagem de rastreamento eficiente e de baixo custo, reprodutível e eficiente para a regulação do sono. As moscas-das-frutas, devido ao seu curto ciclo de vida, baixo custo de criação e facilidade de manuseio, servem como excelentes objetos para este método. A título de ilustração, a Reserpina, uma das drogas testadas, demonstrou a capacidade de promover a duração do sono em moscas idosas, destacando a eficácia desse protocolo.
O sono, um dos comportamentos essenciais necessários para a sobrevivência humana, é caracterizado por dois estados principais: sono de movimento rápido dos olhos (REM) e sono NREM (non-rapid eye movement)1. O sono NREM é composto por três estágios: N1 (transição entre vigília e sono), N2 (sono leve) e N3 (sono profundo, sono de ondas lentas), representando a progressão da vigília para o sono profundo1. O sono desempenha um papel crucial na saúde física e mental2. No entanto, o envelhecimento reduz a duração total do sono, a eficiência do sono, a porcentagem de sono de ondas lentas e a porcentagem de sono REM em adultos3. Indivíduos mais velhos tendem a passar mais tempo em sono leve em comparação com o sono de ondas lentas, tornando-os mais sensíveis a despertares noturnos. À medida que o número de despertares aumenta, o tempo médio de sono diminui, resultando em um padrão de sono fragmentado nos idosos, o que pode estar associado à excitação excessiva dos neurônios Hcrt em camundongos4. Além disso, declínios nos mecanismos circadianos relacionados à idade contribuem para uma mudança mais precoce na duração do sono 5,6. Esses fatores, associados a doenças físicas, estresse psicológico, fatores ambientais e uso de medicamentos, tornam os idosos mais suscetíveis a distúrbios do sono, como insônia, distúrbio comportamental do sono REM, narcolepsia, movimentos periódicos das pernas, síndrome das pernas inquietas e distúrbios respiratórios do sono 7,8.
Estudos epidemiológicos têm demonstrado que os distúrbios do sono estão intimamente ligados a doenças crônicas em idosos9, incluindo depressão 10, doenças cardiovasculares11 e demência12. A abordagem dos distúrbios do sono desempenha um papel crucial na melhoria e tratamento de doenças crônicas e na melhoria da qualidade de vida dos idosos. Atualmente, os pacientes dependem principalmente de drogas como benzodiazepínicos, não-benzodiazepínicos e agonistas dos receptores de melatonina para melhorar a qualidade do sono13. No entanto, os benzodiazepínicos podem levar à diminuição dos receptores e dependência após o uso prolongado, causando sintomas graves de abstinência após a descontinuação14,15. Drogas não benzodiazepínicas também apresentam riscos, incluindo demência16, fraturas17 e câncer18. O agonista comumente usado do receptor de melatonina, o ramelteon, reduz a latência do sono, mas não aumenta a duração do sono e tem preocupações relacionadas à função hepática devido à extensa eliminação de primeira passagem19. A agomelatina, um agonista do receptor de melatonina e antagonista do receptor de serotonina, melhora a insônia relacionada à depressão, mas também representa um risco de dano hepático20. Consequentemente, há uma necessidade urgente de medicamentos mais seguros para tratar ou aliviar distúrbios do sono. No entanto, as estratégias atuais de triagem de fármacos, baseadas em experimentos moleculares e celulares combinados com sistemas automatizados e análises computacionais, são caras e demoradas21. Estratégias de planejamento de fármacos baseadas na estrutura, baseadas na estrutura e propriedades do receptor, requerem uma compreensão clara da estrutura tridimensional do receptor e carecem de capacidade preditiva para os efeitos do fármaco22.
Em 2000, com base nos critérios de sono propostos por Campbell e Tobler em 198423, pesquisadores estabeleceram modelos animais simples para estudar o sono 24, incluindo Drosophila melanogaster, que exibia estados semelhantes aos do sono25,26. Apesar das diferenças anatômicas entre Drosophila e humanos, muitos componentes neuroquímicos e vias de sinalização que regulam o sono em Drosophila são conservados no sono de mamíferos, facilitando o estudo de doenças neurológicas humanas27,28. Drosophila também é extensivamente utilizada em estudos do ritmo circadiano, apesar das diferenças nos osciladores centrais entre moscas e mamíferos 29,30,31. Portanto, Drosophila serve como um organismo modelo valioso para estudar o comportamento do sono e conduzir a triagem de drogas relacionadas ao sono.
Este estudo propõe uma abordagem baseada em fenótipo simples e custo-efetiva para a triagem de drogas de pequenas moléculas para tratar distúrbios do sono usando moscas envelhecidas. A regulação do sono em Drosophila é altamente conservada25, e o declínio do sono observado com a idade pode ser reversível através da administração de medicamentos. Assim, esse método de rastreamento baseado no fenótipo do sono pode refletir intuitivamente a eficácia da droga. Alimentamos as moscas com uma mistura do fármaco investigado com a alimentação, monitoramos e registramos o comportamento do sono usando o Drosophila Activity Monitor (DAM)32 e analisamos os dados adquiridos usando o pacote de dados de SCAMP2020 de código aberto no MATLAB (Figura 1). A análise estatística é realizada por meio de softwares estatísticos e gráficos (ver Tabela de Materiais). Como exemplo, demonstramos a efetividade desse protocolo apresentando dados experimentais sobre a Reserpina, uma pequena molécula inibidora do transportador vesicular de monoamina que aumenta o sono33. Este protocolo fornece uma abordagem valiosa para identificar medicamentos para o tratamento de problemas de sono relacionados à idade.
O método descrito é adequado para rastrear rapidamente medicamentos para dormir de pequeno e médio porte. Atualmente, a maioria dos principais métodos de triagem de drogas de alto rendimento são baseados em níveis bioquímicos e celulares. Por exemplo, a estrutura e as propriedades do receptor são examinadas em busca de ligantes específicos que possam se ligar a ele22. Outra abordagem envolve a análise do modo de ligação e da força de fragmentos moleculares de fármacos selecionados ut…
The authors have nothing to disclose.
Agradecemos aos membros do laboratório do Prof. Junhai Han por suas discussões e comentários. Este trabalho foi apoiado pela Fundação Nacional de Ciências Naturais da China 32170970 a Y.T e pelo “Cyanine Blue Project” da Província de Jiangsu a Z.C.Z.
Ager | BIOFROXX | 8211KG001 | |
Artificial Climate Box | PRANDT | PRX-1000A | official website:https://www.nbplt17.com/PLTXBS-Products-20643427/ |
DAM2 Drosophila Activity Monitor | TriKineics | DAM2 | official website:https://www.trikinetics.com/ |
DAM2system | TriKineics | version:v3.03 | official website:https://www.trikinetics.com/ |
DAMFileScan | TriKineics | version:1.0.7.0 | official website:https://www.trikinetics.com/ |
Dimethyl Sulfoxide | SIGMA | 276855 | |
Drosophila Activity Monitoring Incubator | Tritech Research | DT2-CIRC-TK | official website:https://www.tritechresearch.com/DT2-CIRC-TK.html |
Drosophila Bottles | Biologix | 51-17720 | official website:http://biologixgroup.com/goods.php?id=48 |
Drosophila: w1118 | Bloomington Drosophila Stock Center | BDSC_3605 | |
Excel | Microsoft | version:Excel 2016 | official website:https://www.microsoftstore.com.cn/software/office/excel |
Glass tubes | TriKinetics | PPT5x65 | official website:https://www.trikinetics.com/ |
MATLABR2022b | MathWorks | version:9.13.0.2049777 | official website:https://ww2.mathworks.cn/products/matlab.html |
Prism | GraphPad | Version:Prism 8.0.1 | official website:https://www.graphpad.com/features |
Reserpine | MACKLIN | R817202-1g | |
Saccharose | SIGMA | 1245GR500 | |
SCAMP | Vecsey Lab | N/A | official website:https://academics.skidmore.edu/blogs/cvecsey/ |