Science Education
>

Measuring O2 Consumption in Drosophila melanogaster Using Coulometric Microrespirometry

LEHRERVORBEREITUNG
KONZEPTE
SCHÜLERPROTOKOLL
JoVE Journal
Neurowissenschaften
Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich.  Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
JoVE Journal Neurowissenschaften
Measuring O2 Consumption in Drosophila melanogaster Using Coulometric Microrespirometry

1. Fly rearing and collection

  1. Maintain flies at 25 °C in narrow vials containing standard Drosophila food.
    NOTE: The sample size for each genotype should comprise at least nine replicates, each consisting of a single respirometer chamber containing 15-25 flies, set up as described below.
  2. Transfer the flies every 2-3 days.
  3. Anesthetize flies with CO2, collect groups of 15-25 males of each genotype, and place each group into fresh, unyeasted food vials.
    NOTE: Males were used to reduce variability due to reproductive status. The method applies to both sexes.
  4. Allow the flies to recover at 25 °C for at least 24 h.
    NOTE: By the time of the experiment, flies should be 1-4 days old. The frequency of collections described in step 1.3 can be set to narrow the age range of the flies.

2. Setup and assembly of respirometer chamber

  1. Turn on the water bath and set it to the desired temperature for the experiment.
    NOTE: The experiments below were conducted at 25 °C using 50 mL Schlenk tubes as chambers. Components are to be assembled as shown in Figures 1A, 1B, and 1C.
  2. Clean the ground glass joints of chambers and sensor plugs thoroughly by spraying 70% ethanol onto a laboratory wipe (not directly onto the joint) and wiping dust and old grease from the sensor plug (Figure 1A). Wipe off ethanol with a fresh laboratory wipe.
  3. Place 1 cm piece of cotton roll soaked in purified water into the bottom of the chamber to stabilize the humidity.
    1. Add enough water (~0.5 mL) to form a small pool at the bottom of the cotton roll.
  4. Wipe off any water that has spilled onto the joint of the chamber.
  5. Transfer the flies to labeled polypropylene tubes using a funnel.
    1. Plug the tube with a cotton roll.
      NOTE: Tubes consist of a 5 mL polypropylene test tube, trimmed to 5.5 cm in length and perforated with a hot knife to allow the free exchange of air with the experimental chamber. CO2 anesthesia is known to cause metabolic abnormalities, so flies are transferred without anesthesia which requires more care to avoid losing the flies.
  6. Add one ventilated tube with flies into each respirometer chamber (on top of wet cotton).
  7. Fill soda lime cartridges (4-5 pellets per tube) and place them on the top of the tube containing flies inside the chamber.
    NOTE: Soda lime cartridges consist of 800 µL centrifuge tubes perforated 4-5 times with a power drill.
  8. Fill O2 generators with saturated copper sulfate (CuSO4) solution below level of vent holes
    NOTE: O2 generators consist of screw-cap centrifuge tubes with 4 holes drilled below the threads. Platinum (Pt) and Copper (Cu) electrodes are soldered to two-pin connector, inserted into holes drilled in cap, and affixed with epoxy. Electrolysis of CuSO4 generates the O2 consumed by the experimental organism. CuSO4 is toxic to invertebrates, avoid spills or leakage and clean up immediately.
  9. Connect the filled O2 generator to two-pin connector on the sensor plug.
    NOTE: The copper cathode must connect with the negative output of the controller and the platinum anode to the positive wire. Reversed connections will cause the failure of the experiment.
  10. Place two small dabs of clear silicone grease on opposite sides of the ground glass joint of the sensor plug.
  11. Insert the plug into the chamber and rotate the plug (or chamber) with moderate pressure to spread the grease in the joint.
    1. Wipe off excess grease with a laboratory wipe.
  12. Snap plastic Keck clamps onto joints to secure plugs in chambers. The assembled chamber should look like Figure 1C.
  13. Repeat the above steps for the number of chambers used for the day's experiment.
    NOTE: The number of chambers that can be recorded is limited by the number of available chambers, controllers and USB inputs to the computer. For the present experiments, seven chambers were normally run in parallel. Experimental flies such as mutants should be matched with appropriate controls. A chamber set up identically but without flies should be included in each experiment as a control for environmental variation. Chambers containing different treatments (mutant, wildtype, no-fly) should be rotated between experiments.
  14. Place assembled chambers into a rack in the water bath with stopcocks open (Figure 1E).
    NOTE: To avoid circadian variation, chambers were placed into the bath between 9:30 and 9:50 am for all experiments described here.
  15. Leave stopcocks open (Keep the handle parallel to the stopcock).
    NOTE: Be careful not to allow water to enter the stopcocks.
  16. Allow the chambers to equilibrate with stopcocks open for about 30 min.
    ​NOTE: While the chamber is equilibrated, connect the electronics and set up data acquisition as described below.

3. Setting up controllers and computer

  1. Be sure that the switches supplying current to the O2 generators are in the OFF position (away from the connector; Figure 1D).
  2. Plug each controller box into an available Universal serial bus (USB) port.
    NOTE: Construction and programming of controller units described elsewhere12.
  3. Connect controllers to respirometer chambers using 6-conductor cables.
  4. Check that the organic light emitting diode (OLED) displays of the controllers (Figure 1D) are displaying environmental parameters.
  5. Briefly turn on O2 generators using the switch on the controller (Figure 1D).
    1. If the current value increases from zero to between 35 and 55 mA, the controller and chamber are ready for experiments.
  6. Determine which COM ports are being used by the controllers, as described below.,
    1. Click the Start Icon in Microsoft Windows.
    2. Click the Settings Icon.
    3. Click Bluetooth and Devices.
    4. Ensure that the controllers and their COM ports appear in the list of devices.
  7. Open PuTTY on the desktop and set up a log file for each channel of the respirometer as described below.
    NOTE: PuTTY is a free secure shell and telnet client that is used to transfer data to the computer via COM ports.
    1. Select COM port for a controller by typing the number of the port in the "Serial line" box (Figure 2A).
    2. Click on Logging.
    3. Select Printable Output in "Session logging" (Figure 2B).
    4. Under Log File Name click Durchsuchen.
    5. In the folder of the choice, create a filename containing descriptive information (e.g., date, species, COM port number).
    6. Click Save.
    7. Click Open. A window will open showing comma-delimited data being logged (Figure 2C).
    8. Repeat for all other controllers in use for the experiment. Input to each COM port will appear as a separate window (Figure 2D).

4. Running experiments

  1. Once chambers have equilibrated for 30 min, seal them by closing stopcocks.
  2. Cover the bath and chambers with a polystyrene foam box to maintain a stable environment.
  3. Allow to equilibrate for another hour.
  4. Turn on the current to the O2 generator of each chamber using the switch on the controller box.
  5. Once the O2 generators are activated, ensure that the pressure increases to pre-set OFF pressure.
    NOTE: 1017 hPa, which is slightly above atmospheric pressure, was used as the "OFF" pressure in this series of experiments. Return to the ambient pressure will indicate leakage of gas from the chambers. Further, it allows the same pressure to be used across experiments regardless of ambient barometric pressure. The "ON" pressure was 1016 hPa, meaning that pressure only needed to drop 1 hPa before the O2 generator was activated. This provided adequate sensitivity to measure O2 consumption in Drosophila. Once a chamber is pressurized to the "OFF" setting, current should drop to zero.
  6. Let the experiment run for 3 or more h.
    NOTE: Higher VO2 at elevated temperatures can allow for shorter experiment times. Monitor occasionally to ensure that equipment is functioning but avoid excessive activity near the chambers that may affect temperature stability.

5. Finishing experiment

  1. Turn off O2 generators on all controllers.
    NOTE: Do first to avoid running the O2 generators while the chambers are open.
  2. Open the stopcocks to unseal the chambers.
  3. Leave the PuTTY windows open for another 5-15 min to provide a final baseline.
  4. Close the PuTTY window for each controller, ending recordings.
    ​NOTE: All experiments ended between 4:50 and 5:10 pm.
  5. Disconnect sensors from cables.
  6. Move chambers to dry rack.
  7. Remove sensor plugs one at a time from the chambers.
  8. Disconnect the O2 generators and place them in the tube rack.
  9. Wipe grease off the sensor plug and keep it in the rack.
  10. Clean grease from chamber joints and remove tubes with flies and soda lime.
  11. Anesthetize flies in each tube with CO2, tap onto a weight boat and weigh on a microbalance.
    1. Log the weight and number of flies for each tube.
  12. Discard flies or set them aside for additional procedures.
  13. Dump soda lime from cartridges into the waste container.
  14. Open the O2 generator and discard the CuSO4 solution into the waste container.
    1. Rinse electrodes and tube with purified water.
    2. Place the tube racks for drying.

6. Analysis of charge transfer data

  1. Import Data as comma-delimited text into a spreadsheet, with each record comprising a separate worksheet.
  2. Record the current and time data for each pulse of the O2 generator. Starting with the first pulse after the chamber was pressurized, record the start time and end time (as row numbers) of each current pulse. That is the row number when the current goes above zero (usually to about 45-50 mA) to the last row that is above zero.
  3. Make a table on the worksheet to record the following data:
    1. The average current amplitude during the pulse: = AVERAGE([first row of pulse]:[last row of pulse]) for each pulse (from the current column).
    2. Pulse duration: ([Last row of pulse] – [first row of pulse[-one row]])/1000 for each pulse (from the time in milliseconds column).
    3. Total experiment time: [time at start of last pulse] – [time at end of first pulse after chamber pressurized] (from the time in minutes column).
  4. Then calculate charge transfer (Q) for each pulse (average current X duration)
  5. Sum the charge from all pulses to calculate Total Charge (Qtot).

7. Analysis of O2 consumption

  1. Set up a new spreadsheet for all data and enter or calculate the following for each chamber:
    1. Qtot (total charge)
    2. Moles (= Q ÷ 96485 × 4)
    3. mL O2 (= moles × 22413 mL/mol)
    4. Total time (from the data analysis above)
    5. mL min-1 (= ml O2 ÷ total time)
    6. Weight in grams (flies anesthetized and weighed measured after the experiment)
    7. mL min-1 g-1 (= mL min-1 ÷ weight in grams)
    8. mL/h/g (the above × 60)
    9. mg/fly (= weight of flies ÷ number of flies)
    10. μL fly-1 h-1 (= (mL min-1 × 3600) ÷ number of flies).
  2. Tabulate data for each treatment (genotype, e.g.)
  3. Compare treatments using ANOVA, t-test, or Mann-Whitney u-test 13.

Measuring O2 Consumption in Drosophila melanogaster Using Coulometric Microrespirometry

Learning Objectives

The pressure and current outputs of the respirometer controller are shown for one chamber in one experiment in Figure 3A. The first, long current pulse pressurized the chamber from ambient pressure (approximately 992 hPa) to the pre-set OFF threshold of 1017 hPa. As the flies consumed O2 and CO2 was absorbed, pressure decreased slowly until it reached the ON threshold of 1016 hPa, which activated current through the O2 generator. In the example shown, the average amplitude of each pulse is 50.1 mA, the duration is 16.1 s, yielding a charge transfer of about 0.81 coulombs (C) per pulse. The total charge transfer for this chamber was 3.28 C over a total time of 240.0 min. Using the calculations described in Procedures with the mass and number of flies (23 flies weighing 14.9 mg total), O2 consumption for the group in this chamber was 3.19 mL h-1 g-1 or 2.07 µL h-1 fly-1.

The equipment can be set up easily, with a minimum of training, and performs reliably for many cycles of assembly and shutdown. Nonetheless, equipment must be maintained and inspected regularly, and experimental conditions must be controlled carefully. For example, the loss of a gastight seal, due to failure of a joint or stopcock, can lead to rapid pressurization cycles and spuriously high VO2 (Figure 3B). Additionally, temperature and humidity must remain stable inside the chamber. If temperature or humidity decreases, the resulting pressure drop will be interpreted erroneously as a O2 being consumed. Conversely, upward drift in temperature or humidity will counteract the pressure decrease caused by O2 consumption, and artificially reduce or eliminate the VO2 signal (Figure 3C).

The method was used to test VO2 of CASKΔ18 mutants, which were generated by imprecise excision of a transposable element from the CASK locus14, and in which locomotion is drastically reduced14,16. In wild-type w(ex33) controls, generated by precise excision of the transposable element, average mass-specific O2 consumption was 3.65 ± 0.24 mL·g-1·h-1 (n = 16 chambers; Figure 4A).

Despite their visibly reduced locomotion, CASKΔ18 mutants' VO2 was slightly but not significantly lower than that of controls (mean ± s.e.m.= 3.23 ± 0.13 mL·g-1·h-1; n = 11 groups; P = 0.08 Mann-Whitney u-test).

Because the validity of expressing metabolic rate in terms of body mass has been questioned18, O2 consumption was also analyzed on a per-fly basis (Figure 4B). Using this analysis, VO2 was significantly reduced in CASKΔ18 compared to wild-type controls (ex33: 2.22 ± 0.13 µL·fly-1·h-1; CASKΔ18: 1.58 ± 0.10 µL·fly-1·h-1; P = 0.0003, Mann-Whitney u-test). However, the mean mass of CASKΔ18 flies was >20% lower than that of ex33 controls (Figure 4C; ex33 0.61 ± 0.01 mg; CASKΔ18 0.51± 0.02 mg; P = 0.0005, Mann-Whitney u-test), so the difference in metabolic rate between genotypes is probably due to the difference in their sizes.

Figure 1
Figure 1: Respirometer setup. (A) Diagram of sensor plug (above) and 50 mL chamber (consisting of a 50 mL Schlenk tube, below) before assembly. Note the locations of the 19/22 ground glass joints that will connect the chamber and sensor plug, and that must be cleaned before each experiment. The stopcock, which is necessary for opening or sealing the chamber, is also indicated. (B) Diagram of chamber and components, assembled and ready for the experiment, showing: wet cotton roll, polypropylene tube containing flies, plugged with a cotton stopper, soda-lime cartridge, and O2 generator filled with CuSO4. (C) Photograph of the assembled chamber. The Keck clamp securing the plug to the chamber is partially obscured by the ring stand clamp holding the chamber. (D) Photograph of controller showing switch controlling current through O2 generator and window for viewing OLED display. (E) Assembled chambers in a water bath. Seven chambers are shown, with three containing mutants, three with wildtype controls, and one chamber containing all components except flies. Please click here to view a larger version of this figure.

Figure 2
Figure 2: Data acquisition setup. (A) PuTTY interface for selecting the serial port for data acquisition. COM3 has been selected, with a BAUD rate of 9600 to match the output of the controller. (B) PuTTY interface for setting up log file. "Printable output" is selected to enable logging of data to a text file, data folder is selected using the "Browse" button, and a filename is created. (C) PuTTY log file during an experiment. Data are acquired approximately twice per second, and each line contains the following comma-delimited information: Sensor Number, time (ms) since the beginning of acquisition, chamber temperature (°C), chamber pressure (hPa), Humidity (percent relative), and current (mA). (D) Data logging during a typical experiment, with seven windows for experimental chambers, plus one channel recording bath temperature, ambient air temperature, pressure, and humidity. Please click here to view a larger version of this figure.

Figure 3
Figure 3: Data from microrespirometer. (A) Pressure (grey line, left axis) and current across the O2 generator (black line, right axis) in a single respirometer chamber containing 23 w(ex33) flies. At the beginning, a long current pulse is required to pressurize the chamber from ~992 hPa to the OFF threshold of 1017 hPa. As the flies consumed O2, pressure dropped until it reached the ON threshold of 1016 hPa, which activated current through the O2 generator, which re-pressurized the chamber to 1017 hPa. The process was repeated six times in this experiment. (B) An example of a leaky chamber caused by a damaged stopcock, taken from a different series of experiments. The chamber failed to maintain pressure (grey line), resulting in constant cycling of electrolytic current (black line). Note different timescale from panel A. (C) Effect of drift in humidity. O2 consumption by the 20 mg lady beetle (Hippodamia convergens) in the chamber should have produced a cycling pattern of pressure similar to Figure 3A, but the steady increase in humidity (black line) caused an artifactual increase in chamber pressure (grey line) that masked VO2. Please click here to view a larger version of this figure.

Figure 4
Figure 4: Quantitative data from wild-type and CASK mutant D. melanogaster. (A) Mass-specific VO2 for wild-type (w(ex33)) and mutant (CASKΔ18) flies. In all plots, bottoms and tops of boxes indicate first and third quartiles, respectively, whiskers indicate extreme values, and the sample sizes (numbers of chambers, each containing 17-24 flies) are given in parentheses above the genotypes. CASKΔ18 flies are not statistically significantly different from ex33 (median: ex33: 3.420 mL·g-1·h-1, CASKΔ18: 3.029 mL·g-1·h-1; p = 0.08 Mann-Whitney u-test). (B) Fly-specific VO2. CASKΔ18 flies consumed significantly less O2 (median 1.650 mL·fly-1·h-1) than w(ex33) (2.078 mL·fly-1·h-1; p = 0.0003, Mann-Whitney u-test; significance indicated by asterisks). (C) Mass differed between CASKΔ18 and the wildtype (median: 0.526 mg, ex33: 0.623 mg; p = 0.0005, Mann-Whitney u-test; significance indicated by asterisks). Please click here to view a larger version of this figure.

Table 1. Survey of Drosophila respirometry data from wildtype flies at 25 °C. With one exception18, studies are limited to those measuring O2 consumption. In most cases, it was necessary to estimate VO2 from graphs, and figure numbers from the original papers are provided. Although all genotypes were considered to be "wildtype" the sources and propagation methods varied. Please click here to download this Table.

List of Materials

19/22 Thermometer Adapter Wilmad-Labglass ML-280-702 Sensor Plug
2 ml Screwcap Tubes Fisher 3464 O2 generator
2-Pin Connector Zyamy 40PIN-RFB10 O2 generator: cut to 2-pin
4-Pin Female Connector TE Connectivity 215299-4 Sensor Plug
5 ml Polypropylene Tube Falcon 352063 Cut to 5.5 cm and perforated 
50 ml Schlenk Tube 19/22 Joint Laboy HMF050804 Chamber
6-Conductor Cable Zenith 6-Conductor 26 ga Cable
6-Pin Female Bulkhead Connector Switchcraft 17982-6SG-300 Controller
6-Pin Female Connector Switchcraft 18982-6SG-522 Sensor plug
6-Pin Male Connector Switchcraft 16982-6PG-522 Cable
800 ul centrifuge tube Fisher 05-408-120 Soda Lime Cartridge
ABS Plastic Enclosure Bud Industries PS-11533-G Controller
Arduino Nano Every Arduino LLC ABX00028 Controller
BME 280 Sensor DIYMall FZ1639-BME280 Sensor Plug
Circuit Board Lheng 5 X 7 cm Controller
Copper Sulfate BioPharm BC2045 O2 Generator
Computer Azulle Byte4 Data Acquisition
Cotton Rolls Kajukajudo #2 Cut in half to plug fly tubes
Cut in quarters for humidity
Environmental Chamber Percival I30 VLC8 Fly Care
Epoxy JB Weld Plastic Bonder Secure Electrodes in O2 Generator
Fly Food Lab Express Type R Fly Care
Keck Clamps uxcell a20092300ux0418 Secures glass joint of chamber to plug
Low-Viscosity Epoxy Loctite E-30CL Sensor Plug
OLED Display IZOKEE IZKE31-IIC-WH-3 Controller
Platinum Wire 24 ga uGems 14349 O2 generator
Silicone grease Dow-Corning High Vacuum Grease Seals chamber-plug connection
Soda Lime Jorvet JO553 CO2 absorption
Toggle Switch E-Switch 100SP1T1B1M1QEH Controller
USB Cable Sabrent CB-UM63 Controller
USB Hub Atolla Hub 3.0 Connect controllers to computer
Water bath Amersham 56-1165-33 Temperature Control
Water Bath Tank Glass Cages 15-liter rimless acrylic Bath for Respirometers

Lab Prep

Coulometric microrespirometry is a straightforward, inexpensive method for measuring the O2 consumption of small organisms while maintaining a stable environment. A coulometric microrespirometer consists of an airtight chamber in which O2 is consumed and the CO2 produced by the organism is removed by an absorbent medium. The resulting pressure decrease triggers electrolytic O2 production, and the amount of O2 produced is measured by recording the amount of charge used to generate it. In the present study, the method has been adapted to Drosophila melanogaster tested in small groups, with the sensitivity of the apparatus and the environmental conditions optimized for high stability. The amount of O2 consumed by wildtype flies in this apparatus is consistent with that measured by previous studies. Mass-specific O2 consumption by CASK mutants, which are smaller and known to be less active, was not different from congenic controls. However, the small size of CASK mutants resulted in a significant reduction in O2 consumption on a per-fly basis. Therefore, the microrespirometer is capable of measuring O2 consumption in D. melanogaster, can distinguish modest differences between genotypes, and adds a versatile tool for measuring metabolic rates.

Coulometric microrespirometry is a straightforward, inexpensive method for measuring the O2 consumption of small organisms while maintaining a stable environment. A coulometric microrespirometer consists of an airtight chamber in which O2 is consumed and the CO2 produced by the organism is removed by an absorbent medium. The resulting pressure decrease triggers electrolytic O2 production, and the amount of O2 produced is measured by recording the amount of charge used to generate it. In the present study, the method has been adapted to Drosophila melanogaster tested in small groups, with the sensitivity of the apparatus and the environmental conditions optimized for high stability. The amount of O2 consumed by wildtype flies in this apparatus is consistent with that measured by previous studies. Mass-specific O2 consumption by CASK mutants, which are smaller and known to be less active, was not different from congenic controls. However, the small size of CASK mutants resulted in a significant reduction in O2 consumption on a per-fly basis. Therefore, the microrespirometer is capable of measuring O2 consumption in D. melanogaster, can distinguish modest differences between genotypes, and adds a versatile tool for measuring metabolic rates.

Verfahren

Coulometric microrespirometry is a straightforward, inexpensive method for measuring the O2 consumption of small organisms while maintaining a stable environment. A coulometric microrespirometer consists of an airtight chamber in which O2 is consumed and the CO2 produced by the organism is removed by an absorbent medium. The resulting pressure decrease triggers electrolytic O2 production, and the amount of O2 produced is measured by recording the amount of charge used to generate it. In the present study, the method has been adapted to Drosophila melanogaster tested in small groups, with the sensitivity of the apparatus and the environmental conditions optimized for high stability. The amount of O2 consumed by wildtype flies in this apparatus is consistent with that measured by previous studies. Mass-specific O2 consumption by CASK mutants, which are smaller and known to be less active, was not different from congenic controls. However, the small size of CASK mutants resulted in a significant reduction in O2 consumption on a per-fly basis. Therefore, the microrespirometer is capable of measuring O2 consumption in D. melanogaster, can distinguish modest differences between genotypes, and adds a versatile tool for measuring metabolic rates.

Tags