Summary

一种用于FACS分离的小鼠卫星细胞的CUT&RUN分析的有效方案

Published: July 07, 2023
doi:

Summary

这里介绍的是一种有效的方案,用于小鼠肢体肌肉卫星细胞的荧光激活细胞分选(FACS)分离,适用于研究肌肉纤维中的转录调控,方法是在靶标下切割并使用核酸酶(CUT&RUN)释放。

Abstract

小细胞群的全基因组分析是研究的主要制约因素,特别是在干细胞领域。这项工作描述了一种有效的协议,用于从肢体肌肉(一种结构蛋白含量高的组织)中分离卫星细胞的荧光激活细胞分选(FACS)。通过在补充有分散酶和 I 型胶原酶的培养基中切碎来机械地破坏成年小鼠的解剖肢体肌肉。消化后,匀浆通过细胞过滤器过滤,细胞悬浮在FACS缓冲液中。用可固定的活力染色测定活力,并通过FACS分离免疫染色的卫星细胞。用 Triton X-100 裂解细胞,释放的细胞核与刀豆球蛋白 A 磁珠结合。将细胞核/微珠复合物与针对目标转录因子或组蛋白修饰的抗体一起孵育。洗涤后,将细胞核/微珠复合物与蛋白 A-微球菌核酸酶一起孵育,并用 CaCl2 开始染色质裂解。提取DNA后,建立文库并进行测序,通过生物信息学分析获得全基因组转录因子结合和共价组蛋白修饰图谱。获得的各种组蛋白标记的峰表明,结合事件对卫星细胞具有特异性。此外,已知基序分析显示转录因子 通过其 同源反应元件与染色质结合。因此,该方案适用于研究成年小鼠肢体肌肉卫星细胞中的基因调控。

Introduction

骨骼横纹肌平均占人体总重量的 40%1。肌肉纤维在受伤时表现出显着的再生能力,这可以通过新形成的肌细胞的融合和取代受损肌纤维的新肌纤维的产生来描述2。1961年,亚历山大·毛罗(Alexander Mauro)报道了一组单核细胞,他称之为卫星细胞3。这些干细胞表达转录因子配对盒 7 (PAX7),位于基底层和肌纤维肌节之间4。据报道,它们表达分化簇 34(CD34;一种造血、内皮祖细胞和间充质干细胞标志物)、整合素 α7(ITGA7;一种平滑、心脏和骨骼肌标志物)以及 C-X-C 趋化因子受体 4 型(CXCR4;一种淋巴细胞、造血和卫星细胞标志物)5。在基础条件下,卫星细胞位于特定的微环境中,使它们保持静止状态6。肌肉损伤后,它们被激活、增殖并发生肌生成7。然而,它们只占肌肉细胞总数的一小部分,它们的全基因组分析特别具有挑战性,尤其是在生理环境下(占总细胞的<1%)。

已经描述了从卫星细胞中分离染色质的各种方法,包括染色质免疫沉淀,然后进行大规模平行测序 (ChIP-seq) 或靶标切割和标记 (CUT&Tag) 实验。然而,这两种技术存在一些重要的局限性,这些局限性仍然没有受到挑战。事实上,ChIP-seq 需要大量的起始材料来产生足够的染色质,其中很大一部分在超声处理步骤中丢失。CUT&Tag 更适合低细胞数,但由于 Tn5 转座酶活性,与 ChIP-seq 相比,CUT&Tag 产生更多的脱靶切割位点。此外,由于该酶对开放染色质区域具有高亲和力,因此 CUT&Tag 方法可能优先用于分析与基因组活跃转录区域相关的组蛋白修饰或转录因子,而不是沉默的异染色质 8,9

这里介绍的是一个详细的方案,允许通过FACS分离小鼠肢体肌肉卫星细胞,以便在靶标下进行切割,并使用核酸酶(CUT&RUN)10,11分析释放。各个步骤涉及组织的机械破坏、细胞分选和细胞核分离。通过对共价组蛋白修饰和转录因子进行CUT&RUN分析,证明了该方法在制备活细胞悬液方面的效率。分离细胞的质量使得所描述的方法对于制备染色质特别有吸引力,该染色质可以忠实地捕获天然基因组占有状态,并且可能适用于捕获特定位点(4C-seq)或全基因组水平(Hi-C)的高通量测序。

Protocol

小鼠被饲养在经认可的动物舍中,符合国家动物护理指南(欧盟委员会指令86/609/CEE;法国第87-848号法令)关于使用实验动物进行研究。根据 APAFIS 编号 #22281 下的 2010/63/EU 指令,将预期的操作提交给伦理委员会(Com’Eth,斯特拉斯堡,法国)和法国研究部 (MESR) 进行伦理评估和授权。 1.通过荧光激活细胞分选(FACS)制备用于分离卫星细胞的细胞悬液(<strong class="xfig…

Representative Results

通过结合Gunther等人(以下简称方案1)12 和Liu等人23 (以下简称方案2)的方案从小鼠骨骼肌中分离卫星细胞。由于当使用方案1中提出的胶原酶和分散酶的浓度时,在消化后观察到未消化的肌纤维,因此增加酶的量以改善肌纤维解离,如步骤1.2.1和1.2.3所述。如方案2所示,将样品在水浴中轻轻搅拌以保持细胞活力。如方案1所述,我们通过细胞过滤器进行过滤,并…

Discussion

本研究报告了一种标准化、可靠且易于执行的小鼠卫星细胞分离和培养方法,以及通过 CUT&RUN 方法评估转录调控。

该协议涉及几个关键步骤。首先是肌肉破坏和纤维消化,以确保收集到的大量细胞。尽管酶浓度增加,但获得的活细胞比使用方案 1 更多。卫星细胞表达各种膜蛋白的特定模式。为了提高分选的严格性,我们使用了先前描述的阴性(CD31、TER119、CD45 和 CD11b)和阳?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

我们感谢阿纳斯塔西娅·班沃斯(Anastasia Bannwarth)提供出色的技术援助。我们感谢IGBMC动物舍设施、细胞培养、小鼠临床研究所(ICS,Illkirch,法国)、成像、电子显微镜、流式细胞术和GenomEast平台,“法国Génomique”联盟(ANR-10-INBS-0009)的成员。

作为斯特拉斯堡大学、CNRS 和 Inserm 的 ITI 2021-2028 计划的一部分,跨学科专题研究所 IMCBio 的这项工作得到了 IdEx Unistra (ANR-10-IDEX-0002) 和 SFRI-STRAT’US 项目 (ANR 20-SFRI-0012) 和 EUR IMCBio (ANR-17-EURE-0023) 在法国未来投资计划的框架下的支持。INSERM、CNRS、Unistra、IGBMC、Agence Nationale de la Recherche (ANR-16-CE11-0009, AR2GR)、AFM-Téléthon 战略计划 24376(给 D.D.)、INSERM 青年研究员补助金(给 D.D.)、ANR-10-LABX-0030-INRT 和由 ANR 根据 Investissements d’Avenir 框架计划 (ANR-10-IDEX-0002-02) 管理的法国国家基金提供了额外的资金。J.R.得到了法国阿莱曼德大学和高等研究与创新部的CDFA-07-22计划的支持,以及IGBMC研究协会(ARI)的K.G.支持。

Materials

1.5 mL microtube Eppendorf 2080422
2 mL microtube Star Lab S1620-2700
5 mL tubes CORNING-FALCON 352063
50 mL tubes Falcon 352098
anti-AR abcam ab108341
anti-CD11b eBioscience 25-0112-82
anti-CD31 eBioscience 12-0311-82
anti-CD34 eBioscience 48-0341-82
anti-CD45 eBioscience 12-0451-83
anti-CXCR4 eBioscience 17-9991-82
anti-DMD abcam ab15277
anti-H3K27ac Active Motif 39133
anti-H3K4me2 Active Motif 39141
anti-ITGA7 MBL k0046-4
anti-PAX7 DSHB AB_528428
anti-TER119 BD Pharmingen TM 553673
Beads Polysciences 86057-3 BioMag®Plus Concanavalin A
Cell Strainer 100 µm Corning®  431752
Cell Strainer 40 µm Corning®  431750
Cell Strainer 70 µm Corning®  431751
Centrifuge 1 Eppendorf 521-0011 Centrifuge 5415 R
Centrifuge 2 Eppendorf 5805000010 Centrifuge 5804 R
Chamber Slide System  ThermoFischer 171080 Système Nunc™ Lab-Tek™ Chamber Slide
Cleaning agent Sigma   SLBQ7780V RNaseZAPTM
Collagenase, type I  Thermo Fisher 17100017 10 mg/mL
Dispase  STEMCELL technologies 7913 5 U/mL
DynaMag™-2 Aimant Invitrogen 12321D
Fixable Viability Stain BD Biosciences 565388
Flow cytometer BD FACSAria™ Fusion Flow Cytometer 23-14816-01
Fluoromount G with DAPI Invitrogen 00-4959-52
Genome browser  IGV http://software.broadinstitute.org/software/igv/
Glycerol  Sigma-Aldrich G9012
Hydrogel Corning®  354277 Matrigel hESC qualified matrix
Image processing software Image J® V 1.8.0
Laboratory film Sigma-Aldrich P7793-1EA PARAFILM® M
Liberase LT Roche 5401020001
Propyl gallate Sigma-Aldrich 2370
Sequencer  Illumina Hiseq 4000 SY-401-4001
Shaking water bath Bioblock Scientific polytest 20 18724

Referenzen

  1. Frontera, W. R., Ochala, J. Skeletal muscle: a brief review of structure and function. Calcified Tissue International. 96 (3), 183-195 (2015).
  2. Tedesco, F. S., Dellavalle, A., Diaz-Manera, J., Messina, G., Cossu, G. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. The Journal of Clinical Investigation. 120 (1), 11-19 (2010).
  3. Mauro, A. Satellite cell of skeletal muscle fibers. The Journal of Biophysical and Biochemical Cytology. 9 (2), 493-495 (1961).
  4. Buckingham, M. Skeletal muscle progenitor cells and the role of Pax genes. Comptes Rendus Biologies. 330 (6-7), 530-533 (2007).
  5. Tosic, M., et al. Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells. Nature Communications. 9 (1), 366 (2018).
  6. Kuang, S., Gillespie, M. A., Rudnicki, M. A. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell. 2 (1), 22-31 (2008).
  7. Collins, C. A., et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell. 122 (2), 289-301 (2005).
  8. Robinson, D. C. L., et al. Negative elongation factor regulates muscle progenitor expansion for efficient myofiber repair and stem cell pool repopulation. Developmental Cell. 56 (7), 1014-1029 (2021).
  9. Machado, L., et al. In situ fixation redefines quiescence and early activation of skeletal muscle stem cells. Cell Reports. 21 (7), 1982-1993 (2017).
  10. Hainer, S. J., Fazzio, T. G. High-resolution chromatin profiling using CUT&RUN. Current Protocols in Molecular Biology. 126 (1), 85 (2019).
  11. Meers, M. P., Bryson, T. D., Henikoff, J. G., Henikoff, S. Improved CUT&RUN chromatin profiling tools. eLife. 8, (2019).
  12. Gunther, S., et al. Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell. 13 (5), 590-601 (2013).
  13. Donlin, L. T., et al. Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Research & Therapy. 20 (1), 139 (2018).
  14. Rico, L. G., et al. Accurate identification of cell doublet profiles: Comparison of light scattering with fluorescence measurement techniques. Cytometry. Part A. 103 (3), 447-454 (2022).
  15. Schreiber, V., et al. Extensive NEUROG3 occupancy in the human pancreatic endocrine gene regulatory network. Molecular Metabolism. 53, 101313 (2021).
  16. Rovito, D., et al. Myod1 and GR coordinate myofiber-specific transcriptional enhancers. Nucleic Acids Research. 49 (8), 4472-4492 (2021).
  17. Langmead, B., Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods. 9 (4), 357-359 (2012).
  18. Meers, M. P., Tenenbaum, D., Henikoff, S. Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenetics Chromatin. 12 (1), 42 (2019).
  19. Ramirez, F., et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Research. 44, W160-W165 (2016).
  20. Thorvaldsdottir, H., Robinson, J. T., Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics. 14 (2), 178-192 (2013).
  21. Heinz, S., et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Molecular Cell. 38 (4), 576-589 (2010).
  22. Zou, Z., Ohta, T., Miura, F., Oki, S. ChIP-Atlas 2021 update: a data-mining suite for exploring epigenomic landscapes by fully integrating ChIP-seq, ATAC-seq and Bisulfite-seq data. Nucleic Acids Research. 50, W175-W182 (2022).
  23. Liu, L., Cheung, T. H., Charville, G. W., Rando, T. A. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nature Protocols. 10 (10), 1612-1624 (2015).
  24. Brandhorst, H., et al. Successful human islet isolation utilizing recombinant collagenase. Diabetes. 52 (5), 1143-1146 (2003).
  25. Nikolic, D. M., et al. Comparative analysis of collagenase XI and liberase H1 for the isolation of human pancreatic islets. Hepatogastroenterology. 57 (104), 1573-1578 (2010).
  26. Machado, L., et al. Tissue damage induces a conserved stress response that initiates quiescent muscle stem cell activation. Cell Stem Cell. 28 (6), 1125-1135 (2021).
  27. Diel, P., Baadners, D., Schlupmann, K., Velders, M., Schwarz, J. P. C2C12 myoblastoma cell differentiation and proliferation is stimulated by androgens and associated with a modulation of myostatin and Pax7 expression. Journal of Molecular Endocrinology. 40 (5), 231-241 (2008).
  28. Gronemeyer, H., Gustafsson, J. A., Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nature Reviews Drug Discovery. 3 (11), 950-964 (2004).
  29. Billas, I., Moras, D. Allosteric controls of nuclear receptor function in the regulation of transcription. Journal of Molecular Biology. 425 (13), 2317-2329 (2013).
  30. Garcia-Prat, L., et al. FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nature Cell Biology. 22 (11), 1307-1318 (2020).
  31. Maesner, C. C., Almada, A. E., Wagers, A. J. Established cell surface markers efficiently isolate highly overlapping populations of skeletal muscle satellite cells by fluorescence-activated cell sorting. Skeletal Muscle. 6, 35 (2016).
  32. Schultz, E. A quantitative study of the satellite cell population in postnatal mouse lumbrical muscle. The Anatomical Record. 180 (4), 589-595 (1974).
  33. Hyder, A. Effect of the pancreatic digestion with liberase versus collagenase on the yield, function and viability of neonatal rat pancreatic islets. Cell Biology International. 29 (9), 831-834 (2005).
  34. Liang, F., et al. Dissociation of skeletal muscle for flow cytometric characterization of immune cells in macaques. Journal of Immunological Methods. 425, 69-78 (2015).
  35. Park, J. Y., Chung, H., Choi, Y., Park, J. H. Phenotype and tissue residency of lymphocytes in the murine oral mucosa. Frontiers in Immunology. 8, 250 (2017).
  36. Skulska, K., Wegrzyn, A. S., Chelmonska-Soyta, A., Chodaczek, G. Impact of tissue enzymatic digestion on analysis of immune cells in mouse reproductive mucosa with a focus on gammadelta T cells. Journal of Immunological Methods. 474, 112665 (2019).
check_url/de/65215?article_type=t

Play Video

Diesen Artikel zitieren
Ghaibour, K., Rizk, J., Ebel, C., Ye, T., Philipps, M., Schreiber, V., Metzger, D., Duteil, D. An Efficient Protocol for CUT&RUN Analysis of FACS-Isolated Mouse Satellite Cells. J. Vis. Exp. (197), e65215, doi:10.3791/65215 (2023).

View Video