Hier wird ein effizientes Protokoll für die Fluoreszenz-aktivierte Zellsortierung (FACS) von Muskelsatellitenzellen der Mausgliedmaße vorgestellt, das für die Untersuchung der Transkriptionsregulation in Muskelfasern durch Spaltung unter Targets und Freisetzung unter Verwendung von Nuklease (CUT&RUN) geeignet ist.
Genomweite Analysen mit kleinen Zellpopulationen sind eine große Einschränkung für Studien, insbesondere im Stammzellbereich. Diese Arbeit beschreibt ein effizientes Protokoll für die Fluoreszenz-aktivierte Zellsortierung (FACS) Isolierung von Satellitenzellen aus dem Gliedmaßenmuskel, einem Gewebe mit einem hohen Gehalt an Strukturproteinen. Die präparierten Gliedmaßenmuskeln von erwachsenen Mäusen wurden mechanisch durch Zerkleinern in Medium, das mit Dispase und Typ-I-Kollagenase ergänzt wurde, gestört. Nach dem Aufschluss wurde das Homogenat durch Zellsiebe filtriert und die Zellen wurden in FACS-Puffer suspendiert. Die Viabilität wurde mit fixierbarer Viabilitätsfärbung bestimmt, und immungefärbte Satellitenzellen wurden mittels FACS isoliert. Die Zellen wurden mit Triton X-100 lysiert und die freigesetzten Zellkerne wurden an Concanavalin-A-Magnetkügelchen gebunden. Die Zellkern-/Bead-Komplexe wurden mit Antikörpern gegen den Transkriptionsfaktor oder die interessierenden Histonmodifikationen inkubiert. Nach dem Waschen wurden die Zellkern-/Kügelchenkomplexe mit der Protein-A-Mikrokokken-Nuklease inkubiert und die Chromatinspaltung mit CaCl2 eingeleitet. Nach der DNA-Extraktion wurden Bibliotheken erstellt und sequenziert, und die Profile für die genomweite Transkriptionsfaktorbindung und kovalente Histonmodifikationen wurden durch bioinformatische Analyse erhalten. Die für die verschiedenen Histonmarkierungen erhaltenen Peaks zeigten, dass die Bindungsereignisse spezifisch für Satellitenzellen waren. Darüber hinaus ergab die Analyse bekannter Motive, dass der Transkriptionsfaktor über sein verwandtes Antwortelement an das Chromatin gebunden ist. Dieses Protokoll wurde daher angepasst, um die Genregulation in Satellitenzellen der Gliedmaßenmuskeln von erwachsenen Mäusen zu untersuchen.
Die quergestreifte Skelettmuskulatur macht durchschnittlich 40 % des Gewichts des gesamten menschlichen Körpers aus1. Muskelfasern weisen eine bemerkenswerte Fähigkeit zur Regeneration nach Verletzungen auf, die durch die Fusion neu gebildeter Myozyten und die Bildung neuer Myofasern beschrieben wird, die die beschädigten ersetzen2. Im Jahr 1961 berichtete Alexander Mauro über eine Population von mononukleären Zellen, die er als Satellitenzellen bezeichnete3. Diese Stammzellen exprimieren den Transkriptionsfaktor Pair Box 7 (PAX7) und befinden sich zwischen der Basallamina und dem Sarkolemma der Muskelfasern4. Es wurde berichtet, dass sie den Cluster der Differenzierung 34 (CD34; ein hämatopoetischer, endothelialer Vorläufer und mesenchymaler Stammzellmarker), Integrin alpha 7 (ITGA7; ein glatter Marker für Herz- und Skelettmuskeln) sowie den C-X-C-Chemokinrezeptor Typ 4 (CXCR4; ein Lymphozyten-, hämatopoetischer und Satellitenzellmarker) exprimierten5. Unter basalen Bedingungen befinden sich Satellitenzellen in einer bestimmten Mikroumgebung, die sie in einem Ruhezustand hält6. Bei Muskelschäden werden sie aktiviert, vermehren sich und durchlaufen eine Myogenese7. Da sie jedoch nur einen kleinen Teil der Gesamtzahl der Muskelzellen ausmachen, sind ihre genomweiten Analysen eine besondere Herausforderung, insbesondere unter physiologischen Bedingungen (<1 % der gesamten Zellen).
Es wurden verschiedene Methoden zur Chromatinisolierung aus Satellitenzellen beschrieben, die eine Chromatin-Immunpräzipitation mit anschließender massiver paralleler Sequenzierung (ChIP-seq) oder Spaltung unter Targets und Tagmentation (CUT&Tag) beinhalten. Nichtsdestotrotz weisen diese beiden Techniken einige erhebliche Einschränkungen auf, die unangefochten bleiben. In der Tat erfordert ChIP-seq eine große Menge an Ausgangsmaterial, um genügend Chromatin zu erzeugen, von dem ein großer Teil während des Beschallungsschritts verloren geht. CUT&Tag eignet sich besser für eine niedrige Zellzahl, erzeugt aber aufgrund der Tn5-Transposase-Aktivität mehr Off-Target-Spaltstellen als ChIP-seq. Da dieses Enzym eine hohe Affinität zu offenen Chromatinregionen aufweist, könnte der CUT&Tag-Ansatz bevorzugt für die Analyse von Histonmodifikationen oder Transkriptionsfaktoren verwendet werden, die mit aktiv transkribierten Regionen des Genoms assoziiert sind, anstelle von stillgelegtemHeterochromatin 8,9.
Hier wird ein detailliertes Protokoll vorgestellt, das die Isolierung von Muskelsatellitenzellen der Mausgliedmaßen mittels FACS für die Spaltung unter den Zielen und die Freisetzung mittels Nuklease-Analyse (CUT&RUN)10,11 ermöglicht. Die verschiedenen Schritte umfassen den mechanischen Aufschluss des Gewebes, die Zellsortierung und die Zellkernisolierung. Die Effizienz der Methode in Bezug auf die Herstellung einer lebensfähigen Zellsuspension wurde durch die Durchführung von CUT&RUN-Analysen auf kovalente Histonmodifikationen und Transkriptionsfaktoren demonstriert. Die Qualität der isolierten Zellen macht die beschriebene Methode besonders attraktiv für die Herstellung von Chromatin, das den nativen genomischen Belegungszustand originalgetreu erfasst und wahrscheinlich für die Erfassung der Chromosomenkonformation in Kombination mit Hochdurchsatz-Sequenzierung an spezifischen Loci (4C-seq) oder auf genomweiten Ebenen (Hi-C) geeignet ist.
Die vorliegende Studie berichtet über eine standardisierte, zuverlässige und einfach durchzuführende Methode zur Isolierung und Kultivierung von Maus-Satellitenzellen sowie zur Beurteilung der Transkriptionsregulation durch die CUT&RUN-Methode.
Dieses Protokoll umfasst mehrere kritische Schritte. Die erste ist der Muskelaufschluss und die Verdauung von Ballaststoffen, um eine hohe Anzahl gesammelter Zellen zu gewährleisten. Trotz der erhöhten Enzymkonzentration wurden mehr lebende Zellen …
The authors have nothing to disclose.
Wir danken Anastasia Bannwarth für ihre hervorragende technische Unterstützung. Wir danken dem IGBMC-Tierstall, der Zellkultur, dem Mouse Clinical Institute (ICS, Illkirch, Frankreich), der Bildgebung, der Elektronenmikroskopie, der Durchflusszytometrie und der GenomEast-Plattform, einem Mitglied des “France Génomique”-Konsortiums (ANR-10-INBS-0009).
Diese Arbeit des Interdisziplinären Thematischen Instituts IMCBio im Rahmen des ITI-Programms 2021-2028 der Universität Straßburg, CNRS und Inserm wurde von IdEx Unistra (ANR-10-IDEX-0002) und vom Projekt SFRI-STRAT’US (ANR 20-SFRI-0012) und EUR IMCBio (ANR-17-EURE-0023) im Rahmen des französischen Programms “Investitionen in die Zukunft” unterstützt. Weitere Mittel wurden von INSERM, CNRS, Unistra, IGBMC, Agence Nationale de la Recherche (ANR-16-CE11-0009, AR2GR), dem AFM-Téléthon Strategic Program 24376 (an D.D.), INSERM Young Researcher Grant (an D.D.), ANR-10-LABX-0030-INRT und einem französischen Staatsfonds bereitgestellt, der von der ANR im Rahmen des Rahmenprogramms Investissements d’Avenir (ANR-10-IDEX-0002-02) verwaltet wird. J.R. wurde durch das Programm CDFA-07-22 der Université franco-allemande und des Ministère de l’Enseignement Supérieur de la Recherche et de l’Innovation und K.G. durch die Association pour la Recherche à l’IGBMC (ARI) unterstützt.
1.5 mL microtube | Eppendorf | 2080422 | |
2 mL microtube | Star Lab | S1620-2700 | |
5 mL tubes | CORNING-FALCON | 352063 | |
50 mL tubes | Falcon | 352098 | |
anti-AR | abcam | ab108341 | |
anti-CD11b | eBioscience | 25-0112-82 | |
anti-CD31 | eBioscience | 12-0311-82 | |
anti-CD34 | eBioscience | 48-0341-82 | |
anti-CD45 | eBioscience | 12-0451-83 | |
anti-CXCR4 | eBioscience | 17-9991-82 | |
anti-DMD | abcam | ab15277 | |
anti-H3K27ac | Active Motif | 39133 | |
anti-H3K4me2 | Active Motif | 39141 | |
anti-ITGA7 | MBL | k0046-4 | |
anti-PAX7 | DSHB | AB_528428 | |
anti-TER119 | BD Pharmingen TM | 553673 | |
Beads | Polysciences | 86057-3 | BioMag®Plus Concanavalin A |
Cell Strainer 100 µm | Corning® | 431752 | |
Cell Strainer 40 µm | Corning® | 431750 | |
Cell Strainer 70 µm | Corning® | 431751 | |
Centrifuge 1 | Eppendorf | 521-0011 | Centrifuge 5415 R |
Centrifuge 2 | Eppendorf | 5805000010 | Centrifuge 5804 R |
Chamber Slide System | ThermoFischer | 171080 | Système Nunc™ Lab-Tek™ Chamber Slide |
Cleaning agent | Sigma | SLBQ7780V | RNaseZAPTM |
Collagenase, type I | Thermo Fisher | 17100017 | 10 mg/mL |
Dispase | STEMCELL technologies | 7913 | 5 U/mL |
DynaMag™-2 Aimant | Invitrogen | 12321D | |
Fixable Viability Stain | BD Biosciences | 565388 | |
Flow cytometer | BD FACSAria™ Fusion Flow Cytometer | 23-14816-01 | |
Fluoromount G with DAPI | Invitrogen | 00-4959-52 | |
Genome browser | IGV | http://software.broadinstitute.org/software/igv/ | |
Glycerol | Sigma-Aldrich | G9012 | |
Hydrogel | Corning® | 354277 | Matrigel hESC qualified matrix |
Image processing software | Image J® | V 1.8.0 | |
Laboratory film | Sigma-Aldrich | P7793-1EA | PARAFILM® M |
Liberase LT | Roche | 5401020001 | |
Propyl gallate | Sigma-Aldrich | 2370 | |
Sequencer | Illumina Hiseq 4000 | SY-401-4001 | |
Shaking water bath | Bioblock Scientific polytest 20 | 18724 |