В данной рукописи представлен набор высоко воспроизводимых поведенческих тестов для валидации мышиной модели синдрома Ангельмана.
В этой рукописи описывается батарея поведенческих тестов, доступных для характеристики фенотипов, подобных синдрому Ангельмана (АС), в установленной мышиной модели АС. Мы используем парадигму ротародного обучения, детальный анализ походки и тест на строительство гнезда для выявления и характеристики двигательных нарушений животных. Мы тестируем эмоциональность животных в открытом поле и на повышенных и лабиринтных тестах, а также аффект в тесте на подвеску хвоста. Когда мыши с синдромом Аспергера тестируются в открытом поле, результаты следует интерпретировать с осторожностью, поскольку двигательные дисфункции влияют на поведение мышей в лабиринте и изменяют показатели активности.
Воспроизводимость и эффективность представленных поведенческих тестов уже была подтверждена на нескольких независимых линиях мышей Uba3a с различными вариантами нокаута, что делает этот набор тестов отличным инструментом валидации в исследованиях АС. Модели с соответствующей конструкцией и валидностью лица потребуют дальнейших исследований для выяснения патофизиологии заболевания и позволят разработать причинно-следственные методы лечения.
Синдром Ангельмана (АС) является редким заболеванием развития нервной системы. Наиболее распространенным генетическим происхождением АС является большая делеция участка 15q11-q13 хромосомы материнского происхождения, которая обнаруживается почти у 74%пациенток1. Делеция этой области приводит к потере UBE3A, основного возбудителя АС, кодирующего убиквитин-лигазу E3. Отцовский аллель гена UBE3A в нейронах заглушается в процессе, известном как импринтинг. Как следствие, отцовский импринтинг гена допускает только материнскую экспрессию в центральной нервной системе (ЦНС)2. Таким образом, делеция гена UBE3A из хромосомы материнского происхождения приводит к развитию симптомов АС. У людей АС проявляется в возрасте около 6 месяцев, с задержкой развития, которая сохраняется на всех этапах развития и приводит к тяжелым изнурительным симптомам у больных 3,4. Основные симптомы расстройства включают дефицит мелкой и крупной моторики, в том числе судорожную атаксическую походку, серьезные нарушения речи и умственную отсталость. Примерно 80% пациентов с синдромом Аспергера также страдают нарушениями сна и эпилепсией. На сегодняшний день единственным доступным лечением являются симптоматические препараты, которые уменьшают эпилептические припадки и улучшают качествосна1. Таким образом, разработка надежных животных моделей с воспроизводимыми поведенческими фенотипами наряду с уточненным анализом фенотипирования будет иметь важное значение для выяснения патофизиологических механизмов расстройства и поиска эффективных лекарств и методов лечения.
Сложность человеческого заболевания, поражающего ЦНС, требует, чтобы модельные организмы обладали сопоставимым геномом, физиологией и поведением. Мыши популярны в качестве модельных организмов из-за их короткого репродуктивного цикла, небольшого размера и относительной простоты модификации ДНК. В 1984 году Пол Уилнер предложил три основных критерия валидации модели заболевания: конструкт, лицо и прогностическая валидность, которые используются дляопределения ценности модели. Проще говоря, конструктная валидность отражает биологические механизмы, ответственные за развитие расстройства, валидность лица повторяет его симптомы, а прогностическая валидность описывает реакцию модели на терапевтические препараты.
Чтобы придерживаться вышеуказанных принципов, мы выбрали наиболее распространенную генетическую этиологию, большую делецию материнского локуса 15q11.2-13q, включая ген UBE3A, для создания мышей модели AS. Мы использовали технику CRISPR/Cas9 для удаления участка длиной 76 225.н., охватывающего весь ген UBE3A, охватывающего как кодирующие, так и некодирующие элементы гена, у мышейиз фона C57BL/6N6. Затем мы скрещивали животных для получения гетерозиготных мышей UBE3A+/−. Для валидации модели мы использовали животных от скрещивания самок UBE3A+/− и самцов дикого типа для получения потомства UBE3A+/- (штамм C57BL/6NCrl-UBE3A/Ph, позже присвоенный как UBE3A mGenedel/+) и контрольные однопометники. Мы проверили их мелкую и крупную моторику, эмоциональность и аффект, чтобы повторить основные симптомы синдрома Аспергера. В предыдущей статье мы также оценивали когнитивные функции животных, так как пациенты с синдромом Аспергера также страдают умственнойотсталостью6. Тем не менее, мы не обнаружили когнитивных нарушений у мышей UBE3AmGenedel/+, возможно, из-за молодого возраста животных на момент тестирования7. Более позднее обследование старших животных, в возрасте около 18 недель, выявило дефицит поведенческой гибкости во время реверсивного обучения в парадигме предпочтения места. Однако сложность используемого оборудования для такого анализа требует отдельного методологического модуля, который здесь не включен.
Представленные здесь поведенческие тесты относятся к распространенным инструментам фенотипирования в генетических исследованиях, благодаря их высокой прогностической ценности и достаточной конструктной валидности 8,9,10. Мы использовали эти тесты для валидации мышиной модели АС путем повторения основных симптомов заболевания человека воспроизводимым, независимым от возраста образом. Эмоциональность животного оценивалась в тестах повышенного плюса лабиринта и открытого поля. Оба этих теста основаны на конфликте приближения-избегания, когда животные исследуют новую среду в поисках пищи, укрытия или возможностей для спаривания, одновременно избегая анксиогенных компартментов11. Кроме того, тест в открытом поле используется для проверки локомоторной активности мыши8. Тест на подвеску хвоста широко используется в исследованиях депрессии для скрининга новых антидепрессантов или депрессивных фенотипов в моделях нокаутамышей 12. Этот тест оценивает отчаяние, которое животные развивают с течением времени в неизбежной ситуации. Моторика и детальные характеристики походки определялись на ротароде и в DigiGait соответственно. Выносливость животного на ускорительном стержне характеризует его навыки равновесия и координации движений, в то время как детальный анализ шаговых паттернов мыши является чувствительной оценкой нервно-мышечных нарушений, связанных со многими нейрогенеративными двигательными расстройствами13,14,15. Тест на измельчение гнезд является частью стандартной методики выявления импульсивного поведения грызунов, и, поскольку он использует естественное поведение грызунов, он указывает на благополучие животного16,17.
Размер экспериментальных групп был достигнут в результате компромисса, направленного на выполнение требований правила 3R и эффективное использование показателей размножения колоний. Однако для получения статистической мощности в группах насчитывалось не менее 10 особей, что обусловлено установлением достаточного количества размножающихся пар. К сожалению, племенная продуктивность не всегда приводила к достаточному количеству животных.
Модели АС, созданные на различных линиях мышей, обычно проверяются с помощью тестов эмоционального состояния, двигательных функций и когнитивных способностей животных, чтобы облегчить сравнение с человеческими симптомами31,32. Двигательный дефицит в мод…
The authors have nothing to disclose.
Это исследование было поддержано Чешской академией наук RVO 68378050, LM2018126 Чешским центром феноменомики при поддержке MEYS CR, OP RDE CZ.02.1.01/0.0/0.0/16_013/0001789 (Модернизация Чешского центра феноменомики: развитие в направлении исследований перевода MEYS и ESIF), OP RDE CZ.02.1.01/0.0/0.0/18_046/0015861 (CCP Infrastructure Upgrade II by MEYS и ESIF) и OP RDI CZ.1.05/2.1.00/19.0395 (более высокое качество и емкость для трансгенных моделей MEYS и ERDF). Кроме того, это исследование получило финансирование от НПО «Ассоциация генной терапии (ASGENT)», Чехия (https://asgent.org/) и LM2023036 Чешского центра феноменомики, предоставленного Министерством образования, молодежи и спорта Чешской Республики.
Cages, individually ventilated | Techniplast | ||
DigiGait | Mouse Specifics, Inc., 2 Central Street Level Unit 110 Framingham, MA 01701, USA |
Equipment was tendered, no catalogue number was provided, nor could be find on company's web site | Detailed analysis of mouse gait, hardware and software provided. |
FDA Nestlet squares | Datesand Ltd., 7 Horsfield Way, Bredbury, Stockport SK6, UK | Material was bought from Velaz vendor via direct email request. Velaz do not provide any catalogue no. | Cotton nestlets for nest building test. Nestlet discription: 2-3 g each, with diameter around 5 x 5 x 0.5cm. |
Mouse chow | Altramion | ||
Rotarod | TSE Systems GmbH, Barbara-McClintock-Str.4 12489 Berlin, Germany |
Equipment was tendered, no catalogue number was provided, nor could be find on company's web site | Rotarod for 5 mice, hardware and software provided. Drum dimensions: Diameter: 30 mm, width per lane: 50 mm, falling distance 147 mm. |
Tail Suspension Test | Bioseb, In Vivo Research Instruments, 13845 Vitrolles FRANCE |
Reference: BIO-TST5 | Fully automated equipment for immobility time evaluation of 3 mice hanged by tail, hardware and software provided |
Transpore medical tape | Medical M, Ltd. | P-AIRO1291 | The tape used to attach an animal to the hook by its tail. |
Viewer – Video Tracking System | Biobserve GmbH, Wilhelmstr. 23 A 53111 Bonn, Germany |
Equipment with software were tendered, no catalogue number was provided, nor could be find on company's web site | Software with custom made hardware: maze, IR base, IR sensitive cameras. Custom-made OF dimensions: 42 x 42 cm area, 49 cm high wall, central zone area: 39 cm2. A custom-made EPM was elevated 50 cm above the floor, with an open arm 79 cm long, 9 cm wide, and closed arm 77 cm long, 7.6 cm wide. |