Summary

تقنية بسيطة لفحص النشاط الحركي في ذبابة الفاكهة

Published: February 24, 2023
doi:

Summary

يقيم هذا البروتوكول النشاط الحركي لذبابة الفاكهة من خلال تتبع وتحليل حركة الذباب في ساحة مصنوعة يدويا باستخدام برنامج مفتوح المصدر فيجي ، متوافق مع المكونات الإضافية لتقسيم وحدات البكسل لكل إطار بناء على تسجيل فيديو عالي الدقة لحساب معلمات السرعة والمسافة وما إلى ذلك.

Abstract

ذبابة الفاكهة الميلانية هي كائن نموذجي مثالي لدراسة الأمراض المختلفة بسبب وفرة تقنيات التلاعب الجيني المتقدمة والسمات السلوكية المتنوعة. يعد تحديد النقص السلوكي في النماذج الحيوانية مقياسا حاسما لشدة المرض ، على سبيل المثال ، في الأمراض التنكسية العصبية حيث يعاني المرضى غالبا من ضعف في الوظيفة الحركية. ومع ذلك ، مع توفر أنظمة مختلفة لتتبع وتقييم العجز الحركي في نماذج الذباب ، مثل الأفراد المعالجين بالعقاقير أو المحورة وراثيا ، لا يزال هناك نقص في نظام اقتصادي وسهل الاستخدام للتقييم الدقيق من زوايا متعددة. تم تطوير طريقة تعتمد على واجهة برمجة تطبيق AnimalTracker (API) هنا ، وهي متوافقة مع برنامج معالجة الصور في فيجي ، لإجراء تقييم منهجي لأنشطة حركة كل من الأفراد البالغين واليرقات من الفيديو المسجل ، مما يسمح بتحليل سلوك التتبع الخاص بهم. لا تتطلب هذه الطريقة سوى كاميرا عالية الدقة وتكامل الأجهزة الطرفية للكمبيوتر لتسجيل السلوك وتحليله ، مما يجعلها نهجا فعالا وبأسعار معقولة لفحص نماذج الذباب ذات أوجه القصور السلوكية المعدلة وراثيا أو البيئية. يتم إعطاء أمثلة على الاختبارات السلوكية باستخدام الذباب المعالج دوائيا لإظهار كيف يمكن للتقنيات اكتشاف التغيرات السلوكية في كل من الذباب البالغ واليرقات بطريقة متكررة للغاية.

Introduction

يوفر ذبابة الفاكهة الميلانية كائنا نموذجيا ممتازا للتحقيق في الوظائف الخلوية والجزيئية في نماذج الأمراض العصبية التي تم إنشاؤها بواسطة التعديل الجيني1 ، والعلاج الدوائي2 ، والشيخوخة3. إن الحفظ العالي للمسارات البيولوجية والخصائص الفيزيائية والجينات المتجانسة المرتبطة بالأمراض بين البشر وذبابة الفاكهة يجعل ذبابة الفاكهة تقليدا مثاليا من المستوى الجزيئي إلى المستوى السلوكي4. في العديد من نماذج الأمراض ، يعد النقص السلوكي مؤشرا مهما ، حيث يوفر نموذجا مفيدا لمختلف اعتلالات الأعصاب البشرية 5,6. يستخدم ذبابة الفاكهة الآن لدراسة العديد من الأمراض البشرية ، والنمو العصبي ، والأمراض التنكسية العصبية مثل مرض باركنسون والتصلب الجانبي الضموري7،8. يعد اكتشاف القدرة الحركية لنماذج المرض أمرا بالغ الأهمية لفهم التقدم الممرض وقد يوفر ارتباطا ظاهريا بالآليات الجزيئية الكامنة وراء عملية المرض.

في الآونة الأخيرة ، تم تطوير أدوات برمجية متاحة تجاريا وبرامج فعالة من حيث التكلفة لاستراتيجيات الكشف عن ذبابة الفاكهة الحركية ، مثل الاختبار عالي الإنتاجية في الذباب المجمع9,10 وقياس الحركة في الوقت الفعلي11,12. أحد هذه الأساليب التقليدية هو الانجذاب الجغرافي السلبي التفاعلي السريع (RING) ، والذي يطلق عليه أيضا مقايسة التسلق ، والذي يتضمن قنوات متعددة تسمح باحتواء عدد كبير من الذباب من نفس الجنس والعمر ، مما يقلل من التباين أثناء جمع البيانات 9,13. طريقة أخرى للاختبار المسبق لتحليل السلوك الحركي هي جهاز مراقبة نشاط TriKinetics Drosophila (DAM) ، وهو جهاز يستخدم حزما متعددة للكشف عن حركة نشاط الذباب داخل أنبوب زجاجي رفيع14. يسجل الجهاز الموقع بشكل مستمر ، والذي يمثل الحركة الآلية عن طريق حساب تقاطعات الحزمة لدراسة النشاط وإيقاع الساعة البيولوجية للذباب على مدى فترة زمنية أطول15. على الرغم من أن هذه الطرق قد استخدمت على نطاق واسع في تحليل العيوب السلوكية في ذباب الفاكهة لتحديد التغيرات في الحركة السلوكية ، إلا أنها تتطلب دائما معدات اختبار خاصة أو عمليات تحليل معقدة ، وتقييد تطبيقها في بعض النماذج باستخدام جهاز محدود وبسيط. تقوم الاستراتيجيات الجماعية لتتبع الحيوانات لاختبار ذبابة الفاكهة البالغة ، مثل FlyGrAM11 واختبار جزيرة ذبابة الفاكهة 10 ، بتنفيذ التوظيف الاجتماعي والتتبع الفردي في منطقة محددة مسبقا. ومع ذلك ، قد يكون للتقييد الفردي الاجتماعي في المناطق المتحدية تأثير سلبي على الهويات في الصور ، بسبب تصادم الذباب أو تداخله. على الرغم من أن بعض الطرق القائمة على المواد مفتوحة المصدر ، مثل TRex16 و MARGO 12 و FlyPi17 ، لديها حالة طوارئ ، إلا أنها يمكن أن تتبع الذباب بسرعة مع الاستخدام المرن في الاختبارات السلوكية. ترتبط مناهج الاختبار هذه بتركيبات الأجهزة التجريبية المعقدة أو متطلبات البرامج الخاصة أو لغات الكمبيوتر الاحترافية. بالنسبة لليرقات، فإن قياس المسافة الإجمالية المقطوعة عبر عدد خطوط حدود الشبكة لكل وحدة زمنية18، أو العد التقريبي لانقباضات جدار الجسم للأفراد يدويا19، هي الطرق السائدة لتقييم قدرتها الحركية. بسبب نقص الدقة في المعدات أو الأجهزة وطرق التحليل ، قد تفلت بعض الحركة السلوكية لليرقات من الكشف ، مما يجعل من الصعب تقييم الحركة السلوكية بدقة ، وخاصة الحركة الدقيقة15.

تستخدم الطريقة المطورة الحالية واجهة برمجة تطبيقات AnimalTracker (API) ، المتوافقة مع برنامج معالجة الصور في فيجي (ImageJ) ، لإجراء تقييم منهجي للنشاط الحركي لكل من الذباب البالغ واليرقات من خلال تحليل سلوك التتبع من مقاطع الفيديو عالية الدقة (HD). فيجي هي توزيعة ImageJ برمجية مفتوحة المصدر يمكنها الجمع بين مكتبات البرامج القوية والعديد من لغات البرمجة النصية ، مما يؤدي إلى نماذج أولية سريعة لخوارزميات معالجة الصور ، مما يجعلها شائعة بين علماء الأحياء لقدراتها على تحليل الصور20. في النهج الحالي ، يتم استغلال تكامل فيجي في واجهة برمجة تطبيقات AnimalTracker لتطوير اختبار سلوكي فريد من نوعه لذبابة الفاكهة مع إدخال خوارزمية شخصية ، ويوفر خطوة مفيدة للتوثيق التفصيلي والبرامج التعليمية لدعم القدرات التحليلية القوية للسلوك الحركي (الشكل 1). للتحايل على تعقيد التحديدات الموضوعية في الصور الناتجة عن تصادم الذباب أو تداخله ، تقتصر كل ساحة على استضافة ذبابة واحدة فقط. عند تقييم دقة تتبع النهج ، تم تنفيذه لتتبع وقياس الحركات الحركية لذبابة الفاكهة التي تم إعطاؤها باستخدام عقار روتينون السام ، والذي يستخدم بشكل عام للنماذج الحيوانية لمرض باركنسون ، مما أدى في النهاية إلى اكتشاف ضعف الحركة في العلاج الدوائي21. هذه المنهجية، التي تستخدم برمجيات مفتوحة المصدر ومجانية، لا تتطلب أجهزة عالية التكلفة، ويمكنها تحليل الحركة السلوكية لذبابة الفاكهة بدقة وبشكل متكرر.

Protocol

تم استخدام W1118 الذباب البالغ واليرقات الثالثة في هذه الدراسة. 1. التحضير التجريبي ملاحظة: ساحة مفتوحة المجال لتتبع حركة ذبابة الفاكهة مصنوعة من هلام السيليكا عديم اللون والرائحة. امزج الكاشف A والكاشف B بنسبة 1:10 ، وفقا لتعليمات ال…

Representative Results

في هذه الدراسة ، تم فحص العجز الحركي في الذباب البالغ واليرقات الثالثة المعالجة بالروتينون ومقارنتها في نشاطها الحركي بذبابة التحكم التي تتغذى على مذيب الدواء ثنائي ميثيل سلفوكسيد (DMSO). ثبت أن العلاج بالروتينون في ذبابة الفاكهة يسبب فقدان الخلايا العصبية الدوبامينية في الدماغ<sup class=…

Discussion

لقد صممنا طريقة ، تستند إلى مادة AnimalTracker API مفتوحة المصدر المتوافقة مع برنامج معالجة الصور في فيجي ، والتي يمكن أن تمكن الباحثين من تقييم النشاط الحركي بشكل منهجي من خلال تتبع كل من الذباب اليرقي البالغ والفردي. AnimalTracke هي أداة مكتوبة بلغة Java يمكن دمجها بسهولة في قواعد البيانات الح…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

تم دعم هذا العمل من خلال صندوق إطلاق خاص من جامعة سوشو والمؤسسة الوطنية للعلوم في الصين (NSFC) (82171414). نشكر أعضاء مختبر البروفيسور تشون فنغ ليو على مناقشاتهم وتعليقاتهم.

Materials

Animal tracker Hungarian Brain Research Program version: 1.7 pfficial website: http://animaltracker.elte.hu/main/downloads
Camera software Microsoft version: 2021.105.10.0 built-in windows 10 system
Computer DELL Vostro-14-5480 a comupter running win 10 system is available
Drosophila carbon dioxide anesthesia workstation Wu han Yihong technology #YHDFPCO2-018 official website: http://www.yhkjwh.com/
Fiji software Fiji team version: 1.53v official website: https://fiji.sc/
Format factory software Pcfreetime version: X64 5.4.5 official website: http://www.pcfreetime.com/formatfactory/CN/index.html
Graph pad prism GraphPad Software version: 8.0.2 official website: https://www.graphpad-prism.cn
Hight definition camera TTQ Jingwang2 (HD1080P F1.6 6-60mm) official website: http://www.ttq100.com/product_show.php?id=35
Office software Microsoft version: office 2019 official website: https://www.microsoftstore.com.cn/software/office
Petri dish Bkman 110301003 size: 60 mm
Silica gel DOW SYLGARD 184 Silicone Elastomer Kit Mix well according to the instructions
Sodium bicarbonate Macklin #144-55-8 Mix well with silica gel

Referenzen

  1. Ham, S. J., et al. Loss of UCHL1 rescues the defects related to Parkinson’s disease by suppressing glycolysis. Science Advances. 7 (28), (2021).
  2. Algarve, T. D., Assmann, C. E., Aigaki, T., da Cruz, I. B. M. Parental and preimaginal exposure to methylmercury disrupts locomotor activity and circadian rhythm of adult Drosophila melanogaster. Drug and Chemical Toxicology. 43 (3), 255-265 (2020).
  3. Jones, M. A., Grotewiel, M. Drosophila as a model for age-related impairment in locomotor and other behaviors. Experimental Gerontology. 46 (5), 320-325 (2011).
  4. Yamaguchi, M., Yoshida, H. Drosophila as a model organism. Advances in Experimental Medicine and Biology. 1076, 1-10 (2018).
  5. Rothenfluh, A., Heberlein, U. Drugs, files, and videotape: the effects of ethanol and cocaine on Drosophila locomotion. Current Opinion in Neurobiology. 12 (6), 639-645 (2002).
  6. Tsuda, L., Lim, Y. M. Alzheimer’s disease model system using Drosophila. Advances in Experimental Medicine and Biology. 1076, 25-40 (2018).
  7. Dung, V. M., Thao, D. T. P. Parkinson’s disease model. Advances in Experimental Medicine and Biology. 1076, 41-61 (2018).
  8. Liguori, F., Amadio, S., Volonte, C. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cellular and Molecular Life Sciences. 78 (17-18), 6143-6160 (2021).
  9. Cao, W., et al. An automated rapid iterative negative geotaxis assay for analyzing adult climbing behavior in a Drosophila model of neurodegeneration. Journal of Visualized Experiments. (127), 56507 (2017).
  10. Eidhof, I., et al. High-throughput analysis of locomotor behavior in the Drosophila island assay. Journal of Visualized Experiments. (129), 55892 (2017).
  11. Scaplen, K. M., et al. Automated real-time quantification of group locomotor activity in Drosophila melanogaster. Scientific Reports. 9 (1), 4427 (2019).
  12. Werkhoven, Z., Rohrsen, C., Qin, C., Brembs, B., de Bivort, B. MARGO (Massively Automated Real-time GUI for Object-tracking), a platform for high-throughput ethology. PLoS One. 14 (11), e0224243 (2019).
  13. Gargano, J. W., Martin, I., Bhandari, P., Grotewiel, M. S. Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Experimental Gerontology. 40 (5), 386-395 (2005).
  14. Cichewicz, K., Hirsh, J. ShinyR-DAM: a program analyzing Drosophila activity, sleep and circadian rhythms. Communications Biology. 1, 25 (2018).
  15. McParland, A. L., Follansbee, T. L., Ganter, G. K. Measurement of larval activity in the Drosophila activity monitor. Journal of Visualized Experiments. 98, e52684 (2015).
  16. Walter, T., Couzin, I. D. TRex, a fast multi-animal tracking system with markerless identification, and 2D estimation of posture and visual fields. eLife. 10, (2021).
  17. Maia Chagas, A., Prieto-Godino, L. L., Arrenberg, A. B., Baden, T. The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans. PLoS Biology. 15 (7), e2002702 (2017).
  18. Nichols, C. D., Becnel, J., Pandey, U. B. Methods to assay Drosophila behavior. Journal of Visualized Experiments. (61), (2012).
  19. Xiao, G. Methods to assay the behavior of Drosophila melanogaster for toxicity study. Methods in Molecular Biology. 2326, 47-54 (2021).
  20. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  21. Johnson, M. E., Bobrovskaya, L. An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology. 46, 101-116 (2015).
  22. Coulom, H., Birman, S. Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. The Journal of Neuroscience. 24 (48), 10993-10998 (2004).
  23. Kumar, P. P., Bawani, S. S., Anandhi, D. U., Prashanth, K. V. H. Rotenone mediated developmental toxicity in Drosophila melanogaster. Environmental Toxicology and Pharmacology. 93, 103892 (2022).
  24. Gulyas, M., Bencsik, N., Pusztai, S., Liliom, H., Schlett, K. AnimalTracker: an ImageJ-based tracking API to create a customized behaviour analyser program. Neuroinformatics. 14 (4), 479-481 (2016).
  25. Qu, S. EasyFlyTracker: a simple video tracking Python package for analyzing adult Drosophila locomotor and sleep activity to facilitate revealing the effect of psychiatric drugs. Frontiers in Behavioral Neuroscience. 15, 809665 (2022).
  26. Yarwais, Z. H., Najmalddin, H. O., Omar, Z. J., Mohammed, S. A. Automated data collection of Drosophila movement behaviour assays using computer vision in Python. International Journal of Innovative Approaches in Science Research. 4 (1), 15-22 (2020).

Play Video

Diesen Artikel zitieren
Long, X., Du, H., Jiang, M., Meng, H. A Simple Technique to Assay Locomotor Activity in Drosophila. J. Vis. Exp. (192), e65092, doi:10.3791/65092 (2023).

View Video