Ici, nous présentons un protocole détaillé pour la transplantation d’organoïdes rénaux dans la cavité celomique d’embryons de poulet. Cette méthode induit la vascularisation et une maturation accrue des organoïdes en 8 jours et peut être utilisée pour étudier ces processus de manière efficace.
Les organoïdes rénaux dérivés de cellules souches pluripotentes induites par l’homme contiennent des structures semblables à des néphrons qui ressemblent dans une certaine mesure à celles du rein adulte. Malheureusement, leur applicabilité clinique est entravée par l’absence d’un système vasculaire fonctionnel et, par conséquent, une maturation in vitro limitée. La transplantation d’organoïdes rénaux dans la cavité celomique d’embryons de poulet induit une vascularisation par des vaisseaux sanguins perfusés, y compris la formation de capillaires glomérulaires, et améliore leur maturation. Cette technique est très efficace, permettant la transplantation et l’analyse d’un grand nombre d’organoïdes. Cet article décrit un protocole détaillé pour la transplantation intracélomique d’organoïdes rénaux dans des embryons de poulet, suivie de l’injection de lectine marquée par fluorescence pour colorer le système vasculaire perfusé et de la collecte d’organoïdes transplantés pour l’analyse d’imagerie. Cette méthode peut être utilisée pour induire et étudier la vascularisation et la maturation organoïdes afin de trouver des indices pour améliorer ces processus in vitro et améliorer la modélisation de la maladie.
Il a été démontré que les organoïdes rénaux dérivés de cellules souches pluripotentes induites humaines (hiPSC) ont un potentiel pour les études de développement 1,2,3,4, le dépistage de la toxicité 5,6 et la modélisation de la maladie5,7,8,9,10,11,12,13. Cependant, leur applicabilité à ces fins et à d’éventuelles transplantations cliniques est limitée par l’absence d’un réseau vasculaire. Au cours du développement embryonnaire des reins, les podocytes, les cellules mésangiales et les cellules endothéliales vasculaires (CE) interagissent pour former la structure complexe du glomérule. Sans cette interaction, la barrière de filtration glomérulaire, constituée de podocytes, de la membrane basale glomérulaire (GBM) et de CE, ne peut pas se développer correctement14,15,16. Bien que les organoïdes rénaux in vitro contiennent des CE, ceux-ci ne parviennent pas à former un réseau vasculaire approprié et diminuent avec le temps17. Il n’est donc pas surprenant que les organoïdes restent immatures. La transplantation chez la souris induit la vascularisation et la maturation des organoïdes rénaux 18,19,20,21. Malheureusement, il s’agit d’un processus à forte intensité de main-d’œuvre qui ne convient pas à l’analyse d’un grand nombre d’organoïdes.
Les embryons de poulet sont utilisés pour étudier la vascularisation et le développement depuis plus d’un siècle22. Ils sont facilement accessibles, nécessitent peu d’entretien, n’ont pas de système immunitaire pleinement fonctionnel et peuvent se développer normalement après l’ouverture de la coquille d’œuf23,24,25,26. Il a été démontré que la transplantation d’organoïdes sur leur membrane chorio-allantoïdienne (CAM) conduit à la vascularisation27. Cependant, la durée de la transplantation sur le CAM, ainsi que le niveau de maturation du greffon, sont limités par la formation de CAM, qui prend jusqu’au jour embryonnaire 7 pour se terminer. Par conséquent, une méthode a récemment été développée pour vasculariser efficacement et faire mûrir les organoïdes rénaux par transplantation intracélomique dans des embryons de poulet28. La cavité celomique des embryons de poulet est connue depuis les années 1930 pour être un environnement favorable à la différenciation des tissus embryonnaires29,30. Il est accessible tôt dans le développement embryonnaire et permet une expansion relativement illimitée du greffon dans toutes les directions.
Cet article décrit un protocole pour la transplantation d’organoïdes rénaux dérivés de l’hiPSC dans la cavité celomique d’embryons de poulet du jour 4. Cette méthode induit la vascularisation et une maturation accrue des organoïdes en 8 jours. L’injection d’agglutinine culinaris (ACL) marquée par fluorescence avant de sacrifier les embryons permet de visualiser les vaisseaux sanguins perfusés dans les organoïdes par microscopie confocale.
Dans ce manuscrit, un protocole pour la transplantation intracélomique d’organoïdes rénaux dérivés de l’hiPSC dans des embryons de poulet est démontré. Lors de la transplantation, les organoïdes sont vascularisés par des vaisseaux sanguins perfusés qui consistent en une combinaison de CE dérivées d’organoïdes humains et de poulets. Ceux-ci sont répartis dans tout l’organoïde et envahissent les structures glomérulaires, permettant l’interaction entre les CE et les podocytes. Il a été précédem…
The authors have nothing to disclose.
Nous remercions George Galaris (LUMC, Leiden, Pays-Bas) pour son aide dans l’injection d’embryons de poulet. Nous remercions Saskia van der Wal-Maas (Département d’anatomie et d’embryologie, LUMC, Leiden, Pays-Bas), Conny van Munsteren (Département d’anatomie et d’embryologie, LUMC, Leiden, Pays-Bas), Manon Zuurmond (LUMC, Leiden, Pays-Bas) et Annemarie de Graaf (LUMC, Leiden, Pays-Bas) pour leur soutien. M. Koning est soutenu par « Nephrosearch Stichting tot steun van het wetenschappelijk onderzoek van de afdeling Nierziekten van het LUMC ». Ce travail a été en partie soutenu par le Fonds de l’Université de Leiden « Prof. Jaap de Graeff-Lingling Wiyadhanrma Fund » GWF2019-02. Ce travail est soutenu par les partenaires de Regenerative Medicine Crossing Borders (RegMedXB) et Health Holland, Top Sector Life Sciences & Health. C.W. van den Berg et T.J. Rabelink sont soutenus par le Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), le Novo Nordisk Foundation Center for Stem Cell Medicine est soutenu par des subventions de la Fondation Novo Nordisk (NNF21CC0073729).
0.2 µm filter: Whatman Puradisc 30 syringe filter 0.2 µm | Whatman | 10462200 | |
35 mm glass bottom dishes | MatTek Corporation | P35G-1.5-14-C | |
Aspirator tube assemblies for calibrated microcapillary pipettes | Sigma-Aldrich | A5177-5EA | Contains silicone tubes, mouth piece and connector |
Confocal microscope: Leica White Light Laser Confocal Microscope | Leica | TCS SP8 | |
Dissecting forceps, simple type. Titanium, curved, with fine sharp tips | Hammacher Karl | HAMMHTC091-10 | |
Dissecting forceps, simple type. Titanium, straight, with fine sharp tips | Hammacher Karl | HAMMHTC090-11 | |
Dissecting microscope | Wild Heerbrugg | 355110 | |
Dissecting scissors, curved, OP-special, extra sharp/sharp | Hammacher Karl | HAMMHSB391-10 | |
Donkey serum | Sigma-Aldrich | D9663 | |
Donkey-α-mouse Alexa Fluor 488 | ThermoFisher Scientific | A-212-02 | dilution 1:500 |
Donkey-α-sheep Alexa Fluor 647 | ThermoFisher Scientific | A-21448 | dilution 1:500 |
Double edged stainless steel razor blades | Electron Microsopy Sciences | 72000 | |
DPBS, calcium, magnesium (DPBS-/-) | ThermoFisher Scientific | 14040133 | |
DPBS, no calcium, no magnesium (DPBS+/+) | ThermoFisher Scientific | 14190094 | |
Egg cartons or custom made egg holders | NA | NA | |
Fertilized white leghorn eggs (Gallus Gallus Domesticus) | Drost Loosdrecht B.V. | NA | |
Incubator | Elbanton BV | ET-3 combi | |
Lotus Tetragonolobus lectin (LTL) Biotinylated | Vector Laboratories | B-1325 | dilution 1:300 |
Micro scissors, straight, sharp/sharp, cutting length 10 mm | Hammacher Karl | HAMMHSB500-09 | |
Microcapillaries: Thin wall glass capillaries 1.5 mm, filament | World Precision Instruments | TW150F-3 | |
Micropipette puller | Sutter Instrument Company | Model P-97 | We use the following settings: Heat 533, Pull 60, Velocity 150, Time 200 |
Microscalpel holder: Castroviejo blade and pins holder, 12 cm, round handle, conical 10 mm jaws. | Euronexia | L-120 | |
Mounting medium: Prolong Gold Antifade Mountant | ThermoFisher Scientific | P36930 | |
Olivecrona dura dissector 18 cm | Reda | 41146-18 | |
Parafilm | Heathrow Scientific | HS234526B | |
Penicillin-streptomycin 5,000 U/mL | ThermoFisher Scientific | 15070063 | |
Perforated spoon | Euronexia | S-20-P | |
Petri dish 60 x 15 mm | CELLSTAR | 628160 | |
Plastic transfer pipettes | ThermoFisher Scientific | PP89SB | |
Purified mouse anti-human CD31 antibody | BD Biosciences | 555444 | dilution 1:100 |
Rhodamine labeled Lens Culinaris Agglutinin (LCA) | Vector Laboratories | RL-1042 | This product has recently been discontinued. Vectorlabs does still produce Dylight 649 labeled LCA (DL-1048-1) and fluorescein labeled LCA (FL-1041-5) |
Sheep anti-human NPHS1 antibody | R&D systems | AF4269 | dilution 1:100 |
Sterile hypodermic needles, 19 G | BD microlance | 301500 | |
Streptavidin Alexa Fluor 405 | ThermoFisher Scientific | S32351 | dilution 1:200 |
Syringe 5 mL | BD Emerald | 307731 | |
Transparent tape | Tesa | 4124 | Available at most hardware stores |
Triton X | Sigma-Aldrich | T9284 | |
Tungsten wire, 0.25 mm dia | ThermoFisher Scientific | 010404.H2 |